Abstract:Agent-based modeling (ABM) is a powerful tool for understanding self-organizing biological systems, but it is computationally intensive and often not analytically tractable. Equation learning (EQL) methods can derive continuum models from ABM data, but they typically require extensive simulations for each parameter set, raising concerns about generalizability. In this work, we extend EQL to Multi-experiment equation learning (ME-EQL) by introducing two methods: one-at-a-time ME-EQL (OAT ME-EQL), which learns individual models for each parameter set and connects them via interpolation, and embedded structure ME-EQL (ES ME-EQL), which builds a unified model library across parameters. We demonstrate these methods using a birth--death mean-field model and an on-lattice agent-based model of birth, death, and migration with spatial structure. Our results show that both methods significantly reduce the relative error in recovering parameters from agent-based simulations, with OAT ME-EQL offering better generalizability across parameter space. Our findings highlight the potential of equation learning from multiple experiments to enhance the generalizability and interpretability of learned models for complex biological systems.
Abstract:Plant phenotyping is typically a time-consuming and expensive endeavor, requiring large groups of researchers to meticulously measure biologically relevant plant traits, and is the main bottleneck in understanding plant adaptation and the genetic architecture underlying complex traits at population scale. In this work, we address these challenges by leveraging few-shot learning with convolutional neural networks (CNNs) to segment the leaf body and visible venation of 2,906 P. trichocarpa leaf images obtained in the field. In contrast to previous methods, our approach (i) does not require experimental or image pre-processing, (ii) uses the raw RGB images at full resolution, and (iii) requires very few samples for training (e.g., just eight images for vein segmentation). Traits relating to leaf morphology and vein topology are extracted from the resulting segmentations using traditional open-source image-processing tools, validated using real-world physical measurements, and used to conduct a genome-wide association study to identify genes controlling the traits. In this way, the current work is designed to provide the plant phenotyping community with (i) methods for fast and accurate image-based feature extraction that require minimal training data, and (ii) a new population-scale data set, including 68 different leaf phenotypes, for domain scientists and machine learning researchers. All of the few-shot learning code, data, and results are made publicly available.