Abstract:We present a systematic investigation of deep learning methods applied to quantum error mitigation of noisy output probability distributions from measured quantum circuits. We compare different architectures, from fully connected neural networks to transformers, and we test different design/training modalities, identifying sequence-to-sequence, attention-based models as the most effective on our datasets. These models consistently produce mitigated distributions that are closer to the ideal outputs when tested on both simulated and real device data obtained from IBM superconducting quantum processing units (QPU) up to five qubits. Across several different circuit depths, our approach outperforms other baseline error mitigation techniques. We perform a series of ablation studies to examine: how different input features (circuit, device properties, noisy output statistics) affect performance; cross-dataset generalization across circuit families; and transfer learning to a different IBM QPU. We observe that generalization performance across similar devices with the same architecture works effectively, without needing to fully retrain models.
Abstract:To simulate bosons on a qubit- or qudit-based quantum computer, one has to regularize the theory by truncating infinite-dimensional local Hilbert spaces to finite dimensions. In the search for practical quantum applications, it is important to know how big the truncation errors can be. In general, it is not easy to estimate errors unless we have a good quantum computer. In this paper we show that traditional sampling methods on classical devices, specifically Markov Chain Monte Carlo, can address this issue with a reasonable amount of computational resources available today. As a demonstration, we apply this idea to the scalar field theory on a two-dimensional lattice, with a size that goes beyond what is achievable using exact diagonalization methods. This method can be used to estimate the resources needed for realistic quantum simulations of bosonic theories, and also, to check the validity of the results of the corresponding quantum simulations.
Abstract:Data selection is essential for any data-based optimization technique, such as Reinforcement Learning. State-of-the-art sampling strategies for the experience replay buffer improve the performance of the Reinforcement Learning agent. However, they do not incorporate uncertainty in the Q-Value estimation. Consequently, they cannot adapt the sampling strategies, including exploration and exploitation of transitions, to the complexity of the task. To address this, this paper proposes a new sampling strategy that leverages the exploration-exploitation trade-off. This is enabled by the uncertainty estimation of the Q-Value function, which guides the sampling to explore more significant transitions and, thus, learn a more efficient policy. Experiments on classical control environments demonstrate stable results across various environments. They show that the proposed method outperforms state-of-the-art sampling strategies for dense rewards w.r.t. convergence and peak performance by 26% on average.