Abstract:Many quantum software development kits provide a suite of circuit optimisation passes. These passes have been highly optimised and tested in isolation. However, the order in which they are applied is left to the user, or else defined in general-purpose default pass sequences. While general-purpose sequences miss opportunities for optimisation which are particular to individual circuits, designing pass sequences bespoke to particular circuits requires exceptional knowledge about quantum circuit design and optimisation. Here we propose and demonstrate training a reinforcement learning agent to compose optimisation-pass sequences. In particular the agent's action space consists of passes for two-qubit gate count reduction used in default PyTKET pass sequences. For the circuits in our diverse test set, the (mean, median) fraction of two-qubit gates removed by the agent is $(57.7\%, \ 56.7 \%)$, compared to $(41.8 \%, \ 50.0 \%)$ for the next best default pass sequence.
Abstract:We present a systematic investigation of deep learning methods applied to quantum error mitigation of noisy output probability distributions from measured quantum circuits. We compare different architectures, from fully connected neural networks to transformers, and we test different design/training modalities, identifying sequence-to-sequence, attention-based models as the most effective on our datasets. These models consistently produce mitigated distributions that are closer to the ideal outputs when tested on both simulated and real device data obtained from IBM superconducting quantum processing units (QPU) up to five qubits. Across several different circuit depths, our approach outperforms other baseline error mitigation techniques. We perform a series of ablation studies to examine: how different input features (circuit, device properties, noisy output statistics) affect performance; cross-dataset generalization across circuit families; and transfer learning to a different IBM QPU. We observe that generalization performance across similar devices with the same architecture works effectively, without needing to fully retrain models.