Abstract:We introduce PEPO (Pessimistic Ensemble based Preference Optimization), a single-step Direct Preference Optimization (DPO)-like algorithm to mitigate the well-known over-optimization issue in preference learning without requiring the knowledge of the data-generating distribution or learning an explicit reward model. PEPO achieves pessimism via an ensemble of preference-optimized policies trained on disjoint data subsets and then aggregates them through a worst case construction that favors the agreement across models. In the tabular setting, PEPO achieves sample complexity guarantees depending only on a single-policy concentrability coefficient, thus avoiding the all-policy concentrability which affects the guarantees of algorithms prone to over-optimization, such as DPO. The theoretical findings are corroborated by a convincing practical performance, while retaining the simplicity and the practicality of DPO-style training.
Abstract:Graphic layout generation is a growing research area focusing on generating aesthetically pleasing layouts ranging from poster designs to documents. While recent research has explored ways to incorporate user constraints to guide the layout generation, these constraints often require complex specifications which reduce usability. We introduce an innovative approach exploiting user-provided sketches as intuitive constraints and we demonstrate empirically the effectiveness of this new guidance method, establishing the sketch-to-layout problem as a promising research direction, which is currently under-explored. To tackle the sketch-to-layout problem, we propose a multimodal transformer-based solution using the sketch and the content assets as inputs to produce high quality layouts. Since collecting sketch training data from human annotators to train our model is very costly, we introduce a novel and efficient method to synthetically generate training sketches at scale. We train and evaluate our model on three publicly available datasets: PubLayNet, DocLayNet and SlidesVQA, demonstrating that it outperforms state-of-the-art constraint-based methods, while offering a more intuitive design experience. In order to facilitate future sketch-to-layout research, we release O(200k) synthetically-generated sketches for the public datasets above. The datasets are available at https://github.com/google-deepmind/sketch_to_layout.