Abstract:Classroom behavior monitoring is a critical aspect of educational research, with significant implications for student engagement and learning outcomes. Recent advancements in Visual Question Answering (VQA) models offer promising tools for automatically analyzing complex classroom interactions from video recordings. In this paper, we investigate the applicability of several state-of-the-art open-source VQA models, including LLaMA2, LLaMA3, QWEN3, and NVILA, in the context of classroom behavior analysis. To facilitate rigorous evaluation, we introduce our BAV-Classroom-VQA dataset derived from real-world classroom video recordings at the Banking Academy of Vietnam. We present the methodology for data collection, annotation, and benchmark the performance of the selected VQA models on this dataset. Our initial experimental results demonstrate that all four models achieve promising performance levels in answering behavior-related visual questions, showcasing their potential in future classroom analytics and intervention systems.
Abstract:The ability of CodeLLMs to generate executable and functionally correct code at the \textit{repository-level scale }remains largely unexplored. We introduce \methodnamews, a novel benchmark for evaluating code generation at the repository-level scale, emphasizing executability and correctness. \methodnamews provides an automated system that verifies requirements and incorporates a mechanism for dynamically generating high-coverage test cases to assess the functionality of generated code. Our work explores a controlled scenario where developers specify necessary code dependencies, challenging the model to integrate these accurately. Experiments show that while pretrained LLMs outperform instruction-tuning models in correctness, the latter excel in utilizing provided dependencies and demonstrating debugging capabilities. \methodnamews aims to provide a comprehensive evaluation of code functionality and alignment with developer intent, paving the way for more reliable and applicable CodeLLMs in real-world scenarios.