Abstract:The learning process for medical residents presents significant challenges, demanding both the ability to interpret complex case reports and the rapid acquisition of accurate medical knowledge from reliable sources. Residents typically study case reports and engage in discussions with peers and mentors, but finding relevant educational materials and evidence to support their learning from these cases is often time-consuming and challenging. To address this, we introduce MedTutor, a novel system designed to augment resident training by automatically generating evidence-based educational content and multiple-choice questions from clinical case reports. MedTutor leverages a Retrieval-Augmented Generation (RAG) pipeline that takes clinical case reports as input and produces targeted educational materials. The system's architecture features a hybrid retrieval mechanism that synergistically queries a local knowledge base of medical textbooks and academic literature (using PubMed, Semantic Scholar APIs) for the latest related research, ensuring the generated content is both foundationally sound and current. The retrieved evidence is filtered and ordered using a state-of-the-art reranking model and then an LLM generates the final long-form output describing the main educational content regarding the case-report. We conduct a rigorous evaluation of the system. First, three radiologists assessed the quality of outputs, finding them to be of high clinical and educational value. Second, we perform a large scale evaluation using an LLM-as-a Judge to understand if LLMs can be used to evaluate the output of the system. Our analysis using correlation between LLMs outputs and human expert judgments reveals a moderate alignment and highlights the continued necessity of expert oversight.




Abstract:Automated summarization of healthcare community question-answering forums is challenging due to diverse perspectives presented across multiple user responses to each question. The PerAnsSumm Shared Task was therefore proposed to tackle this challenge by identifying perspectives from different answers and then generating a comprehensive answer to the question. In this study, we address the PerAnsSumm Shared Task using two complementary paradigms: (i) a training-based approach through QLoRA fine-tuning of LLaMA-3.3-70B-Instruct, and (ii) agentic approaches including zero- and few-shot prompting with frontier LLMs (LLaMA-3.3-70B-Instruct and GPT-4o) and a Mixture-of-Agents (MoA) framework that leverages a diverse set of LLMs by combining outputs from multi-layer feedback aggregation. For perspective span identification/classification, GPT-4o zero-shot achieves an overall score of 0.57, substantially outperforming the 0.40 score of the LLaMA baseline. With a 2-layer MoA configuration, we were able to improve LLaMA performance up by 28 percent to 0.51. For perspective-based summarization, GPT-4o zero-shot attains an overall score of 0.42 compared to 0.28 for the best LLaMA zero-shot, and our 2-layer MoA approach boosts LLaMA performance by 32 percent to 0.37. Furthermore, in few-shot setting, our results show that the sentence-transformer embedding-based exemplar selection provides more gain than manually selected exemplars on LLaMA models, although the few-shot prompting is not always helpful for GPT-4o. The YaleNLP team's approach ranked the overall second place in the shared task.
Abstract:Large Language Models (LLMs) can benefit from mitigating hallucinations through fact-checking and overcoming substantial computational overhead with parameter-efficient techniques such as Low-Rank Adaptation (LoRA). While some studies have explored the parallel integration of multiple LoRAs, these approaches need attention to the connections between them. This paper investigates methods to establish connections among multiple LoRAs. We create three reasoning datasets tailored to fact-checking and fine-tune individual LoRAs, allowing them to view and reason from diverse perspectives. Then, we explore strategies for allocating these reasoning LoRAs and introduce LoraMap, an approach to map connections between them. The results on the fact-checking task demonstrate that the performance of LoraMap is superior to LoraHub, an existing LoRA composition method. LoraMap also outperforms with significantly fewer parameters than LoraConcat, which concatenates LoRAs and further fine-tunes them.




Abstract:In the rapidly evolving field of healthcare, the integration of artificial intelligence (AI) has become a pivotal component in the automation of clinical workflows, ushering in a new era of efficiency and accuracy. This study focuses on the transformative capabilities of the fine-tuned KoELECTRA model in comparison to the GPT-4 model, aiming to facilitate automated information extraction from thyroid operation narratives. The current research landscape is dominated by traditional methods heavily reliant on regular expressions, which often face challenges in processing free-style text formats containing critical details of operation records, including frozen biopsy reports. Addressing this, the study leverages advanced natural language processing (NLP) techniques to foster a paradigm shift towards more sophisticated data processing systems. Through this comparative study, we aspire to unveil a more streamlined, precise, and efficient approach to document processing in the healthcare domain, potentially revolutionizing the way medical data is handled and analyzed.