Abstract:We present MEMprop, the adoption of gradient-based learning to train fully memristive spiking neural networks (MSNNs). Our approach harnesses intrinsic device dynamics to trigger naturally arising voltage spikes. These spikes emitted by memristive dynamics are analog in nature, and thus fully differentiable, which eliminates the need for surrogate gradient methods that are prevalent in the spiking neural network (SNN) literature. Memristive neural networks typically either integrate memristors as synapses that map offline-trained networks, or otherwise rely on associative learning mechanisms to train networks of memristive neurons. We instead apply the backpropagation through time (BPTT) training algorithm directly on analog SPICE models of memristive neurons and synapses. Our implementation is fully memristive, in that synaptic weights and spiking neurons are both integrated on resistive RAM (RRAM) arrays without the need for additional circuits to implement spiking dynamics, e.g., analog-to-digital converters (ADCs) or thresholded comparators. As a result, higher-order electrophysical effects are fully exploited to use the state-driven dynamics of memristive neurons at run time. By moving towards non-approximate gradient-based learning, we obtain highly competitive accuracy amongst previously reported lightweight dense fully MSNNs on several benchmarks.
Abstract:We present a fully memristive spiking neural network (MSNN) consisting of physically-realizable memristive neurons and memristive synapses to implement an unsupervised Spiking Time Dependent Plasticity (STDP) learning rule. The system is fully memristive in that both neuronal and synaptic dynamics can be realized by using memristors. The neuron is implemented using the SPICE-level memristive integrate-and-fire (MIF) model, which consists of a minimal number of circuit elements necessary to achieve distinct depolarization, hyperpolarization, and repolarization voltage waveforms. The proposed MSNN uniquely implements STDP learning by using cumulative weight changes in memristive synapses from the voltage waveform changes across the synapses, which arise from the presynaptic and postsynaptic spiking voltage signals during the training process. Two types of MSNN architectures are investigated: 1) a biologically plausible memory retrieval system, and 2) a multi-class classification system. Our circuit simulation results verify the MSNN's unsupervised learning efficacy by replicating biological memory retrieval mechanisms, and achieving 97.5% accuracy in a 4-pattern recognition problem in a large scale discriminative MSNN.
Abstract:We present a fully memristive spiking neural network (MSNN) consisting of novel memristive neurons trained using the backpropagation through time (BPTT) learning rule. Gradient descent is applied directly to the memristive integrated-and-fire (MIF) neuron designed using analog SPICE circuit models, which generates distinct depolarization, hyperpolarization, and repolarization voltage waveforms. Synaptic weights are trained by BPTT using the membrane potential of the MIF neuron model and can be processed on memristive crossbars. The natural spiking dynamics of the MIF neuron model are fully differentiable, eliminating the need for gradient approximations that are prevalent in the spiking neural network literature. Despite the added complexity of training directly on SPICE circuit models, we achieve 97.58% accuracy on the MNIST testing dataset and 75.26% on the Fashion-MNIST testing dataset, the highest accuracies among all fully MSNNs.