Abstract:Early-stage candidate validation is a major bottleneck in hiring, because recruiters must reconcile heterogeneous inputs (resumes, screening answers, code assignments, and limited public evidence). This paper presents an AI-driven, modular multi-agent hiring assistant that integrates (i) document and video preprocessing, (ii) structured candidate profile construction, (iii) public-data verification, (iv) technical/culture-fit scoring with explicit risk penalties, and (v) human-in-the-loop validation via an interactive interface. The pipeline is orchestrated by an LLM under strict constraints to reduce output variability and to generate traceable component-level rationales. Candidate ranking is computed by a configurable aggregation of technical fit, culture fit, and normalized risk penalties. The system is evaluated on 64 real applicants for a mid-level Python backend engineer role, using an experienced recruiter as the reference baseline and a second, less experienced recruiter for additional comparison. Alongside precision/recall, we propose an efficiency metric measuring expected time per qualified candidate. In this study, the system improves throughput and achieves 1.70 hours per qualified candidate versus 3.33 hours for the experienced recruiter, with substantially lower estimated screening cost, while preserving a human decision-maker as the final authority.
Abstract:The brain tumor is the most aggressive kind of tumor and can cause low life expectancy if diagnosed at the later stages. Manual identification of brain tumors is tedious and prone to errors. Misdiagnosis can lead to false treatment and thus reduce the chances of survival for the patient. Medical resonance imaging (MRI) is the conventional method used to diagnose brain tumors and their types. This paper attempts to eliminate the manual process from the diagnosis process and use machine learning instead. We proposed the use of pretrained convolutional neural networks (CNN) for the diagnosis and classification of brain tumors. Three types of tumors were classified with one class of non-tumor MRI images. Networks that has been used are ResNet50, EfficientNetB1, EfficientNetB7, EfficientNetV2B1. EfficientNet has shown promising results due to its scalable nature. EfficientNetB1 showed the best results with training and validation accuracy of 87.67% and 89.55%, respectively.




Abstract:Global environment monitoring is a task that requires additional attention in the contemporary rapid climate change environment. This includes monitoring the rate of deforestation and areas affected by flooding. Satellite imaging has greatly helped monitor the earth, and deep learning techniques have helped to automate this monitoring process. This paper proposes a solution for observing the area covered by the forest and water. To achieve this task UNet model has been proposed, which is an image segmentation model. The model achieved a validation accuracy of 82.55% and 82.92% for the segmentation of areas covered by forest and water, respectively.
Abstract:One of the most significant problems which inhibits further developments in the areas of Knowledge Representation and Artificial Intelligence is a problem of semantic alignment or knowledge mapping. The progress in its solution will be greatly beneficial for further advances of information retrieval, ontology alignment, relevance calculation, text mining, natural language processing etc. In the paper the concept of multidimensional global knowledge map, elaborated through unsupervised extraction of dependencies from large documents corpus, is proposed. In addition, the problem of direct Human - Knowledge Representation System interface is addressed and a concept of adaptive decoder proposed for the purpose of interaction with previously described unified mapping model. In combination these two approaches are suggested as basis for a development of a new generation of knowledge representation systems.