Abstract:Advancements in LLMs have enhanced task automation in software engineering; however, current evaluations primarily focus on natural language tasks, overlooking code quality. Most benchmarks prioritize high-level reasoning over executable code and real-world performance, leaving gaps in understanding true capabilities and risks associated with these models in production. To address this issue, we propose MERA Code, a new addition to the MERA benchmark family, specifically focused on evaluating code for the latest code generation LLMs in Russian. This benchmark includes 11 evaluation tasks that span 8 programming languages. Our proposed evaluation methodology features a taxonomy that outlines the practical coding skills necessary for models to complete these tasks. The benchmark comprises an open-source codebase for users to conduct MERA assessments, a scoring system compatible with various programming environments, and a platform featuring a leaderboard and submission system. We evaluate open LLMs and frontier API models, analyzing their limitations in terms of practical coding tasks in non-English languages. We are publicly releasing MERA to guide future research, anticipate groundbreaking features in model development, and standardize evaluation procedures.
Abstract:We propose a computationally efficient method for real-time three-dimensional football trajectory reconstruction from a single broadcast camera. In contrast to previous work, our approach introduces a multi-mode state model with $W$ discrete modes to significantly accelerate optimization while preserving centimeter-level accuracy -- even in cases of severe occlusion, motion blur, and complex backgrounds. The system operates on standard CPUs and achieves low latency suitable for live broadcast settings. Extensive evaluation on a proprietary dataset of 6K-resolution Russian Premier League matches demonstrates performance comparable to multi-camera systems, without the need for specialized or costly infrastructure. This work provides a practical method for accessible and accurate 3D ball tracking in professional football environments.