Abstract:Advancements in LLMs have enhanced task automation in software engineering; however, current evaluations primarily focus on natural language tasks, overlooking code quality. Most benchmarks prioritize high-level reasoning over executable code and real-world performance, leaving gaps in understanding true capabilities and risks associated with these models in production. To address this issue, we propose MERA Code, a new addition to the MERA benchmark family, specifically focused on evaluating code for the latest code generation LLMs in Russian. This benchmark includes 11 evaluation tasks that span 8 programming languages. Our proposed evaluation methodology features a taxonomy that outlines the practical coding skills necessary for models to complete these tasks. The benchmark comprises an open-source codebase for users to conduct MERA assessments, a scoring system compatible with various programming environments, and a platform featuring a leaderboard and submission system. We evaluate open LLMs and frontier API models, analyzing their limitations in terms of practical coding tasks in non-English languages. We are publicly releasing MERA to guide future research, anticipate groundbreaking features in model development, and standardize evaluation procedures.
Abstract:Automatic program repair at project level may open yet to be seen opportunities in various fields of human activity. Since the SWE-Bench challenge was presented, we have seen numerous of solutions. Patch generation is a part of program repair, and test suite-based conversational patch generation has proven its effectiveness. However, the potential of conversational patch generation has not yet specifically estimated on SWE-Bench. This study reports experimental results aimed at evaluating the individual effectiveness of conversational patch generation on problems from SWE-Bench. The experiments show that a simple conversational pipeline based on LLaMA 3.1 70B can generate valid patches in 47\% of cases, which is comparable to the state-of-the-art in program repair on SWE-Bench.
Abstract:This paper presents the results of finetuning large language models (LLMs) for the task of detecting vulnerabilities in source code. We leverage WizardCoder, a recent improvement of the state-of-the-art LLM StarCoder, and adapt it for vulnerability detection through further finetuning. To accelerate training, we modify WizardCoder's training procedure, also we investigate optimal training regimes. For the imbalanced dataset with many more negative examples than positive, we also explore different techniques to improve classification performance. The finetuned WizardCoder model achieves improvement in ROC AUC and F1 measures on balanced and imbalanced vulnerability datasets over CodeBERT-like model, demonstrating the effectiveness of adapting pretrained LLMs for vulnerability detection in source code. The key contributions are finetuning the state-of-the-art code LLM, WizardCoder, increasing its training speed without the performance harm, optimizing the training procedure and regimes, handling class imbalance, and improving performance on difficult vulnerability detection datasets. This demonstrates the potential for transfer learning by finetuning large pretrained language models for specialized source code analysis tasks.
Abstract:In this technical report, we evaluated the performance of the ChatGPT and GPT-3 models for the task of vulnerability detection in code. Our evaluation was conducted on our real-world dataset, using binary and multi-label classification tasks on CWE vulnerabilities. We decided to evaluate the model because it has shown good performance on other code-based tasks, such as solving programming challenges and understanding code at a high level. However, we found that the ChatGPT model performed no better than a dummy classifier for both binary and multi-label classification tasks for code vulnerability detection.