Abstract:Photorealistic color retouching plays a vital role in visual content creation, yet manual retouching remains inaccessible to non-experts due to its reliance on specialized expertise. Reference-based methods offer a promising alternative by transferring the preset color of a reference image to a source image. However, these approaches often operate as novice learners, performing global color mappings derived from pixel-level statistics, without a true understanding of semantic context or human aesthetics. To address this issue, we propose SemiNFT, a Diffusion Transformer (DiT)-based retouching framework that mirrors the trajectory of human artistic training: beginning with rigid imitation and evolving into intuitive creation. Specifically, SemiNFT is first taught with paired triplets to acquire basic structural preservation and color mapping skills, and then advanced to reinforcement learning (RL) on unpaired data to cultivate nuanced aesthetic perception. Crucially, during the RL stage, to prevent catastrophic forgetting of old skills, we design a hybrid online-offline reward mechanism that anchors aesthetic exploration with structural review. % experiments Extensive experiments show that SemiNFT not only outperforms state-of-the-art methods on standard preset transfer benchmarks but also demonstrates remarkable intelligence in zero-shot tasks, such as black-and-white photo colorization and cross-domain (anime-to-photo) preset transfer. These results confirm that SemiNFT transcends simple statistical matching and achieves a sophisticated level of aesthetic comprehension. Our project can be found at https://melanyyang.github.io/SemiNFT/.