Abstract:Various multi-instance learning (MIL) based approaches have been developed and successfully applied to whole-slide pathological images (WSI). Existing MIL methods emphasize the importance of feature aggregators, but largely neglect the instance-level representation learning. They assume that the availability of a pre-trained feature extractor can be directly utilized or fine-tuned, which is not always the case. This paper proposes to pre-train feature extractor for MIL via a weakly-supervised scheme, i.e., propagating the weak bag-level labels to the corresponding instances for supervised learning. To learn effective features for MIL, we further delve into several key components, including strong data augmentation, a non-linear prediction head and the robust loss function. We conduct experiments on common large-scale WSI datasets and find it achieves better performance than other pre-training schemes (e.g., ImageNet pre-training and self-supervised learning) in different downstream tasks. We further show the compatibility and scalability of the proposed scheme by deploying it in fine-tuning the pathological-specific models and pre-training on merged multiple datasets. To our knowledge, this is the first work focusing on the representation learning for MIL.