Abstract:Depression is a severe global mental health issue that impairs daily functioning and overall quality of life. Although recent audio-visual approaches have improved automatic depression detection, methods that ignore emotional cues often fail to capture subtle depressive signals hidden within emotional expressions. Conversely, those incorporating emotions frequently confuse transient emotional expressions with stable depressive symptoms in feature representations, a phenomenon termed \emph{Emotional Ambiguity}, thereby leading to detection errors. To address this critical issue, we propose READ-Net, the first audio-visual depression detection framework explicitly designed to resolve Emotional Ambiguity through Adaptive Feature Recalibration (AFR). The core insight of AFR is to dynamically adjust the weights of emotional features to enhance depression-related signals. Rather than merely overlooking or naively combining emotional information, READ-Net innovatively identifies and preserves depressive-relevant cues within emotional features, while adaptively filtering out irrelevant emotional noise. This recalibration strategy significantly clarifies feature representations, and effectively mitigates the persistent challenge of emotional interference. Additionally, READ-Net can be easily integrated into existing frameworks for improved performance. Extensive evaluations on three publicly available datasets show that READ-Net outperforms state-of-the-art methods, with average gains of 4.55\% in accuracy and 1.26\% in F1-score, demonstrating its robustness to emotional disturbances and improving audio-visual depression detection.