Abstract:In healthcare, it is essential for any LLM-generated output to be reliable and accurate, particularly in cases involving decision-making and patient safety. However, the outputs are often unreliable in such critical areas due to the risk of hallucinated outputs from the LLMs. To address this issue, we propose a fact-checking module that operates independently of any LLM, along with a domain-specific summarization model designed to minimize hallucination rates. Our model is fine-tuned using Low-Rank Adaptation (LoRa) on the MIMIC III dataset and is paired with the fact-checking module, which uses numerical tests for correctness and logical checks at a granular level through discrete logic in natural language processing (NLP) to validate facts against electronic health records (EHRs). We trained the LLM model on the full MIMIC-III dataset. For evaluation of the fact-checking module, we sampled 104 summaries, extracted them into 3,786 propositions, and used these as facts. The fact-checking module achieves a precision of 0.8904, a recall of 0.8234, and an F1-score of 0.8556. Additionally, the LLM summary model achieves a ROUGE-1 score of 0.5797 and a BERTScore of 0.9120 for summary quality.
Abstract:ChatGPT is a conversational artificial intelligence that is a member of the generative pre-trained transformer of the large language model family. This text generative model was fine-tuned by both supervised learning and reinforcement learning so that it can produce text documents that seem to be written by natural intelligence. Although there are numerous advantages of this generative model, it comes with some reasonable concerns as well. This paper presents a machine learning-based solution that can identify the ChatGPT delivered text from the human written text along with the comparative analysis of a total of 11 machine learning and deep learning algorithms in the classification process. We have tested the proposed model on a Kaggle dataset consisting of 10,000 texts out of which 5,204 texts were written by humans and collected from news and social media. On the corpus generated by GPT-3.5, the proposed algorithm presents an accuracy of 77%.