Abstract:We propose novel classical and quantum online algorithms for learning finite-horizon and infinite-horizon average-reward Markov Decision Processes (MDPs). Our algorithms are based on a hybrid exploration-generative reinforcement learning (RL) model wherein the agent can, from time to time, freely interact with the environment in a generative sampling fashion, i.e., by having access to a "simulator". By employing known classical and new quantum algorithms for approximating optimal policies under a generative model within our learning algorithms, we show that it is possible to avoid several paradigms from RL like "optimism in the face of uncertainty" and "posterior sampling" and instead compute and use optimal policies directly, which yields better regret bounds compared to previous works. For finite-horizon MDPs, our quantum algorithms obtain regret bounds which only depend logarithmically on the number of time steps $T$, thus breaking the $O(\sqrt{T})$ classical barrier. This matches the time dependence of the prior quantum works of Ganguly et al. (arXiv'23) and Zhong et al. (ICML'24), but with improved dependence on other parameters like state space size $S$ and action space size $A$. For infinite-horizon MDPs, our classical and quantum bounds still maintain the $O(\sqrt{T})$ dependence but with better $S$ and $A$ factors. Nonetheless, we propose a novel measure of regret for infinite-horizon MDPs with respect to which our quantum algorithms have $\operatorname{poly}\log{T}$ regret, exponentially better compared to classical algorithms. Finally, we generalise all of our results to compact state spaces.
Abstract:Logistic regression, the Support Vector Machine (SVM), and least squares are well-studied methods in the statistical and computer science community, with various practical applications. High-dimensional data arriving on a real-time basis makes the design of online learning algorithms that produce sparse solutions essential. The seminal work of \hyperlink{cite.langford2009sparse}{Langford, Li, and Zhang (2009)} developed a method to obtain sparsity via truncated gradient descent, showing a near-optimal online regret bound. Based on this method, we develop a quantum sparse online learning algorithm for logistic regression, the SVM, and least squares. Given efficient quantum access to the inputs, we show that a quadratic speedup in the time complexity with respect to the dimension of the problem is achievable, while maintaining a regret of $O(1/\sqrt{T})$, where $T$ is the number of iterations.
Abstract:We present a novel quantum high-dimensional linear regression algorithm with an $\ell_1$-penalty based on the classical LARS (Least Angle Regression) pathwise algorithm. Similarly to available classical numerical algorithms for Lasso, our quantum algorithm provides the full regularisation path as the penalty term varies, but quadratically faster per iteration under specific conditions. A quadratic speedup on the number of features/predictors $d$ is possible by using the simple quantum minimum-finding subroutine from D\"urr and Hoyer (arXiv'96) in order to obtain the joining time at each iteration. We then improve upon this simple quantum algorithm and obtain a quadratic speedup both in the number of features $d$ and the number of observations $n$ by using the recent approximate quantum minimum-finding subroutine from Chen and de Wolf (ICALP'23). As one of our main contributions, we construct a quantum unitary based on quantum amplitude estimation to approximately compute the joining times to be searched over by the approximate quantum minimum finding. Since the joining times are no longer exactly computed, it is no longer clear that the resulting approximate quantum algorithm obtains a good solution. As our second main contribution, we prove, via an approximate version of the KKT conditions and a duality gap, that the LARS algorithm (and therefore our quantum algorithm) is robust to errors. This means that it still outputs a path that minimises the Lasso cost function up to a small error if the joining times are only approximately computed. Finally, in the model where the observations are generated by an underlying linear model with an unknown coefficient vector, we prove bounds on the difference between the unknown coefficient vector and the approximate Lasso solution, which generalises known results about convergence rates in classical statistical learning theory analysis.