Abstract:We study how participation in collective action is articulated in podcast discussions, using the Black Lives Matter (BLM) movement as a case study. While research on collective action discourse has primarily focused on text-based content, this study takes a first step toward analyzing audio formats by using podcast transcripts. Using the Structured Podcast Research Corpus (SPoRC), we investigated spoken language expressions of participation in collective action, categorized as problem-solution, call-to-action, intention, and execution. We identified podcast episodes discussing racial justice after important BLM-related events in May and June of 2020, and extracted participatory statements using a layered framework adapted from prior work on social media. We examined the emotional dimensions of these statements, detecting eight key emotions and their association with varying stages of activism. We found that emotional profiles vary by stage, with different positive emotions standing out during calls-to-action, intention, and execution. We detected negative associations between collective action and negative emotions, contrary to theoretical expectations. Our work contributes to a better understanding of how activism is expressed in spoken digital discourse and how emotional framing may depend on the format of the discussion.
Abstract:Millions of people use online social networks to reinforce their sense of belonging, for example by giving and asking for feedback as a form of social validation and self-recognition. It is common to observe disagreement among people beliefs and points of view when expressing this feedback. Modeling and analyzing such interactions is crucial to understand social phenomena that happen when people face different opinions while expressing and discussing their values. In this work, we study a Reddit community in which people participate to judge or be judged with respect to some behavior, as it represents a valuable source to study how users express judgments online. We model threads of this community as complex networks of user interactions growing in time, and we analyze the evolution of their structural properties. We show that the evolution of Reddit networks differ from other real social networks, despite falling in the same category. This happens because their global clustering coefficient is extremely small and the average shortest path length increases over time. Such properties reveal how users discuss in threads, i.e. with mostly one other user and often by a single message. We strengthen such result by analyzing the role that disagreement and reciprocity play in such conversations. We also show that Reddit thread's evolution over time is governed by two subgraphs growing at different speeds. We discover that, in the studied community, the difference of such speed is higher than in other communities because of the user guidelines enforcing specific user interactions. Finally, we interpret the obtained results on user behavior drawing back to Social Judgment Theory.