Abstract:Convolutional neural networks have achieved a great success in the recent years. Although, the way to maximize the performance of the convolutional neural networks still in the beginning. Furthermore, the optimization of the size and the time that need to train the convolutional neural networks is very far away from reaching the researcher's ambition. In this paper, we proposed a new convolutional neural network that combined several techniques to boost the optimization of the convolutional neural network in the aspects of speed and size. As we used our previous model Residual-CNDS (ResCNDS), which solved the problems of slower convergence, overfitting, and degradation, and compressed it. The outcome model called Residual-Squeeze-CNDS (ResSquCNDS), which we demonstrated on our sold technique to add residual learning and our model of compressing the convolutional neural networks. Our model of compressing adapted from the SQUEEZENET model, but our model is more generalizable, which can be applied almost to any neural network model, and fully integrated into the residual learning, which addresses the problem of the degradation very successfully. Our proposed model trained on very large-scale MIT Places365-Standard scene datasets, which backing our hypothesis that the new compressed model inherited the best of the previous ResCNDS8 model, and almost get the same accuracy in the validation Top-1 and Top-5 with 87.64% smaller in size and 13.33% faster in the training time.
Abstract:Deep learning has given way to a new era of machine learning, apart from computer vision. Convolutional neural networks have been implemented in image classification, segmentation and object detection. Despite recent advancements, we are still in the very early stages and have yet to settle on best practices for network architecture in terms of deep design, small in size and a short training time. In this work, we propose a very deep neural network comprised of 16 Convolutional layers compressed with the Fire Module adapted from the SQUEEZENET model. We also call for the addition of residual connections to help suppress degradation. This model can be implemented on almost every neural network model with fully incorporated residual learning. This proposed model Residual-Squeeze-VGG16 (ResSquVGG16) trained on the large-scale MIT Places365-Standard scene dataset. In our tests, the model performed with accuracy similar to the pre-trained VGG16 model in Top-1 and Top-5 validation accuracy while also enjoying a 23.86% reduction in training time and an 88.4% reduction in size. In our tests, this model was trained from scratch.