Abstract:In this paper, we propose a new solution for the detection problem of a coherent target in heterogeneous environments. Specifically, we first assume that clutter returns from different range bins share the same covariance structure but different power levels. This model meets the experimental evidence related to non-Gaussian and non-homogeneous scenarios. Then, unlike existing solutions that are based upon estimate and plug methods, we propose an approximation of the generalized likelihood ratio test where the maximizers of the likelihoods are obtained through an alternating estimation procedure. Remarkably, we also prove that such estimation procedure leads to an architecture possessing the constant false alarm rate (CFAR) when a specific initialization is used. The performance analysis, carried out on simulated as well as measured data and in comparison with suitable well-known competitors, highlights that the proposed architecture can overcome the CFAR competitors and exhibits a limited loss with respect to the other non-CFAR detectors.
Abstract:This paper addresses the problem of detecting multidimensional subspace signals, which model range-spread targets, in noise of unknown covariance. It is assumed that a primary channel of measurements, possibly consisting of signal plus noise, is augmented with a secondary channel of measurements containing only noise. The noises in these two channels share a common covariance matrix, up to a scale, which may be known or unknown. The signal model is a subspace model with variations: the subspace may be known or known only by its dimension; consecutive visits to the subspace may be unconstrained or they may be constrained by a prior distribution. As a consequence, there are four general classes of detectors and, within each class, there is a detector for the case where the scale between the primary and secondary channels is known, and for the case where this scale is unknown. The generalized likelihood ratio (GLR) based detectors derived in this paper, when organized with previously published GLR detectors, comprise a unified theory of adaptive subspace detection from primary and secondary channels of measurements.
Abstract:This paper addresses the challenge of classifying polarimetric SAR images by leveraging the peculiar characteristics of the polarimetric covariance matrix (PCM). To this end, a general framework to solve a multiple hypothesis test is introduced with the aim to detect and classify contextual spatial variations in polarimetric SAR images. Specifically, under the null hypothesis, only an unknown structure is assumed for data belonging to a 2-dimensional spatial sliding window, whereas under each alternative hypothesis, data are partitioned into subsets sharing different structures. The problem of partition estimation is solved by resorting to hidden random variables representative of covariance structure classes and the expectation-maximization algorithm. The effectiveness of the proposed detection strategies is demonstrated on both simulated and real polarimetric SAR data also in comparison with existing classification algorithms.
Abstract:In this letter, we propose three schemes designed to detect attacks over the air interface in cellular networks. These decision rules rely on the generalized likelihood ratio test, and are fed by data that can be acquired using common off-the-shelf receivers. In addition to more classical (barrage/smart) noise jamming attacks, we further assess the capability of the proposed schemes to detect the stealthy activation of a rogue base station. The evaluation is carried out through an experimentation of a LTE system concretely reproduced using Software-Defined Radios. Illustrative examples confirm that the proposed schemes can effectively detect air interface threats with high probability.
Abstract:This letter addresses the detection problem of dim maneuvering targets in the presence of range cell migration. Specifically, it is assumed that the moving target can appear in more than one range cell within the transmitted pulse train. Then, the Bayesian information criterion and the generalized likelihood ratio test design procedure are jointly exploited to come up with six adaptive decision schemes capable of estimating the range indices related to the target migration. The computational complexity of the proposed detectors is also studied and suitably reduced. Simulation results show the effectiveness of the newly proposed solutions also for a limited set of training data and in comparison with suitable counterparts.
Abstract:In this paper, we address the problem of target detection in the presence of coherent (or fully correlated) signals, which can be due to multipath propagation effects or electronic attacks by smart jammers. To this end, we formulate the problem at hand as a multiple-hypothesis test that, besides the conventional radar alternative hypothesis, contains additional hypotheses accounting for the presence of an unknown number of interfering signals. In this context and leveraging the classification capabilities of the Model Order Selection rules, we devise penalized likelihood-ratio-based detection architectures that can establish, as a byproduct, which hypothesis is in force. Moreover, we propose a suboptimum procedure to estimate the angles of arrival of multiple coherent signals ensuring (at least for the considered parameters) almost the same performance as the exhaustive search. Finally, the performance assessment, conducted over simulated data and in comparison with conventional radar detectors, highlights that the proposed architectures can provide satisfactory performance in terms of probability of detection and correct classification.