Alert button
Picture for Daniel Haehn

Daniel Haehn

Alert button

Web-based Melanoma Detection

Add code
Bookmark button
Alert button
Mar 22, 2024
SangHyuk Kim, Edward Gaibor, Daniel Haehn

Viaarxiv icon

Lesion Search with Self-supervised Learning

Add code
Bookmark button
Alert button
Nov 18, 2023
Kristin Qi, Jiali Cheng, Daniel Haehn

Figure 1 for Lesion Search with Self-supervised Learning
Figure 2 for Lesion Search with Self-supervised Learning
Figure 3 for Lesion Search with Self-supervised Learning
Figure 4 for Lesion Search with Self-supervised Learning
Viaarxiv icon

MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision

Add code
Bookmark button
Alert button
Sep 12, 2023
Jianning Li, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R. Memon, Xiaojun Chen, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G. Ellis, Michele R. Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A. Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Emmanuel Audenaert, Claudia Krebs, Timo Van Leeuwen, Evie Vereecke, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H. Bahnsen, Constantin Seibold, Alexander Jaus, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Lars E. Podleska, Matthias A. Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F. Hoyer, Oliver Basu, Thomas Maal, Max J. H. Witjes, Ti-chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Christos Davatzikos, Behrus Puladi, Jens Kleesiek, Jan Egger

Figure 1 for MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Figure 2 for MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Figure 3 for MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Figure 4 for MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Viaarxiv icon

SlicerTMS: Interactive Real-time Visualization of Transcranial Magnetic Stimulation using Augmented Reality and Deep Learning

Add code
Bookmark button
Alert button
May 23, 2023
Loraine Franke, Tae Young Park, Jie Luo, Yogesh Rathi, Steve Pieper, Lipeng Ning, Daniel Haehn

Figure 1 for SlicerTMS: Interactive Real-time Visualization of Transcranial Magnetic Stimulation using Augmented Reality and Deep Learning
Figure 2 for SlicerTMS: Interactive Real-time Visualization of Transcranial Magnetic Stimulation using Augmented Reality and Deep Learning
Figure 3 for SlicerTMS: Interactive Real-time Visualization of Transcranial Magnetic Stimulation using Augmented Reality and Deep Learning
Figure 4 for SlicerTMS: Interactive Real-time Visualization of Transcranial Magnetic Stimulation using Augmented Reality and Deep Learning
Viaarxiv icon

AutoDOViz: Human-Centered Automation for Decision Optimization

Add code
Bookmark button
Alert button
Feb 19, 2023
Daniel Karl I. Weidele, Shazia Afzal, Abel N. Valente, Cole Makuch, Owen Cornec, Long Vu, Dharmashankar Subramanian, Werner Geyer, Rahul Nair, Inge Vejsbjerg, Radu Marinescu, Paulito Palmes, Elizabeth M. Daly, Loraine Franke, Daniel Haehn

Figure 1 for AutoDOViz: Human-Centered Automation for Decision Optimization
Figure 2 for AutoDOViz: Human-Centered Automation for Decision Optimization
Figure 3 for AutoDOViz: Human-Centered Automation for Decision Optimization
Figure 4 for AutoDOViz: Human-Centered Automation for Decision Optimization
Viaarxiv icon

FiberStars: Visual Comparison of Diffusion Tractography Data between Multiple Subjects

Add code
Bookmark button
Alert button
May 16, 2020
Loraine Franke, Daniel Karl I. Weidele, Fan Zhang, Suheyla Cetin-Karayumak, Steve Pieper, Lauren J. O'Donnell, Yogesh Rathi, Daniel Haehn

Figure 1 for FiberStars: Visual Comparison of Diffusion Tractography Data between Multiple Subjects
Figure 2 for FiberStars: Visual Comparison of Diffusion Tractography Data between Multiple Subjects
Figure 3 for FiberStars: Visual Comparison of Diffusion Tractography Data between Multiple Subjects
Figure 4 for FiberStars: Visual Comparison of Diffusion Tractography Data between Multiple Subjects
Viaarxiv icon

TRAKO: Efficient Transmission of Tractography Data for Visualization

Add code
Bookmark button
Alert button
Apr 26, 2020
Daniel Haehn, Loraine Franke, Fan Zhang, Suheyla Cetin Karayumak, Steve Pieper, Lauren O'Donnell, Yogesh Rathi

Figure 1 for TRAKO: Efficient Transmission of Tractography Data for Visualization
Figure 2 for TRAKO: Efficient Transmission of Tractography Data for Visualization
Figure 3 for TRAKO: Efficient Transmission of Tractography Data for Visualization
Figure 4 for TRAKO: Efficient Transmission of Tractography Data for Visualization
Viaarxiv icon

Fast Mitochondria Segmentation for Connectomics

Add code
Bookmark button
Alert button
Dec 14, 2018
Vincent Casser, Kai Kang, Hanspeter Pfister, Daniel Haehn

Figure 1 for Fast Mitochondria Segmentation for Connectomics
Figure 2 for Fast Mitochondria Segmentation for Connectomics
Figure 3 for Fast Mitochondria Segmentation for Connectomics
Figure 4 for Fast Mitochondria Segmentation for Connectomics
Viaarxiv icon

Guided Proofreading of Automatic Segmentations for Connectomics

Add code
Bookmark button
Alert button
Apr 04, 2017
Daniel Haehn, Verena Kaynig, James Tompkin, Jeff W. Lichtman, Hanspeter Pfister

Figure 1 for Guided Proofreading of Automatic Segmentations for Connectomics
Figure 2 for Guided Proofreading of Automatic Segmentations for Connectomics
Figure 3 for Guided Proofreading of Automatic Segmentations for Connectomics
Figure 4 for Guided Proofreading of Automatic Segmentations for Connectomics
Viaarxiv icon