Abstract:As Artificial Intelligence (AI) is increasingly used in areas that significantly impact human lives, concerns about fairness and transparency have grown, especially regarding their impact on protected groups. Recently, the intersection of explainability and fairness has emerged as an important area to promote responsible AI systems. This paper explores how explainability methods can be leveraged to detect and interpret unfairness. We propose a pipeline that integrates local post-hoc explanation methods to derive fairness-related insights. During the pipeline design, we identify and address critical questions arising from the use of explanations as bias detectors such as the relationship between distributive and procedural fairness, the effect of removing the protected attribute, the consistency and quality of results across different explanation methods, the impact of various aggregation strategies of local explanations on group fairness evaluations, and the overall trustworthiness of explanations as bias detectors. Our results show the potential of explanation methods used for fairness while highlighting the need to carefully consider the aforementioned critical aspects.
Abstract:Path-based explanations provide intrinsic insights into graph-based recommendation models. However, most previous work has focused on explaining an individual recommendation of an item to a user. In this paper, we propose summary explanations, i.e., explanations that highlight why a user or a group of users receive a set of item recommendations and why an item, or a group of items, is recommended to a set of users as an effective means to provide insights into the collective behavior of the recommender. We also present a novel method to summarize explanations using efficient graph algorithms, specifically the Steiner Tree and the Prize-Collecting Steiner Tree. Our approach reduces the size and complexity of summary explanations while preserving essential information, making explanations more comprehensible for users and more useful to model developers. Evaluations across multiple metrics demonstrate that our summaries outperform baseline explanation methods in most scenarios, in a variety of quality aspects.
Abstract:Algorithmic fairness and explainability are foundational elements for achieving responsible AI. In this paper, we focus on their interplay, a research area that is recently receiving increasing attention. To this end, we first present two comprehensive taxonomies, each representing one of the two complementary fields of study: fairness and explanations. Then, we categorize explanations for fairness into three types: (a) Explanations to enhance fairness metrics, (b) Explanations to help us understand the causes of (un)fairness, and (c) Explanations to assist us in designing methods for mitigating unfairness. Finally, based on our fairness and explanation taxonomies, we present undiscovered literature paths revealing gaps that can serve as valuable insights for future research.