Abstract:We show that the out-of-equilibrium driving protocol of score-based generative models (SGMs) can be learned via a local learning rule. The gradient with respect to the parameters of the driving protocol are computed directly from force measurements or from observed system dynamics. As a demonstration, we implement an SGM in a network of driven, nonlinear, overdamped oscillators coupled to a thermal bath. We first apply it to the problem of sampling from a mixture of two Gaussians in 2D. Finally, we train a network of 10x10 oscillators to sample images of 0s and 1s from the MNIST dataset.