Abstract:Data quality stands at the forefront of deciding the effectiveness of video-language representation learning. However, video-text pairs in previous data typically do not align perfectly with each other, which might lead to video-language representations that do not accurately reflect cross-modal semantics. Moreover, previous data also possess an uneven distribution of concepts, thereby hampering the downstream performance across unpopular subjects. To address these problems, we propose a contrastive objective with a subtractive angular margin to regularize cross-modal representations in their effort to reach perfect similarity. Furthermore, to adapt to the non-uniform concept distribution, we propose a multi-layer perceptron (MLP)-parameterized weighting function that maps loss values to sample weights which enable dynamic adjustment of the model's focus throughout the training. With the training guided by a small amount of unbiased meta-data and augmented by video-text data generated by large vision-language model, we improve video-language representations and achieve superior performances on commonly used video question answering and text-video retrieval datasets.
Abstract:Humans use multiple senses to comprehend the environment. Vision and language are two of the most vital senses since they allow us to easily communicate our thoughts and perceive the world around us. There has been a lot of interest in creating video-language understanding systems with human-like senses since a video-language pair can mimic both our linguistic medium and visual environment with temporal dynamics. In this survey, we review the key tasks of these systems and highlight the associated challenges. Based on the challenges, we summarize their methods from model architecture, model training, and data perspectives. We also conduct performance comparison among the methods, and discuss promising directions for future research.
Abstract:Previous work on multimodal sentence embedding has proposed multimodal contrastive learning and achieved promising results. However, by taking the rest of the batch as negative samples without reviewing when forming contrastive pairs, those studies encountered many suspicious and noisy negative examples, significantly affecting the methods' overall performance. In this work, we propose KDMCSE (Knowledge Distillation Multimodal contrastive learning of Sentence Embeddings), a novel approach that enhances the discrimination and generalizability of multimodal representation and inherits the knowledge from the teacher model to learn the difference between positive and negative instances and via that, can detect noisy and wrong negative samples effectively before they are calculated in the contrastive objective. Furthermore, to overcome the limitation of modeling the variation within negative pairs, we introduce a new contrastive objective, AdapACSE (Adaptive Angular Margin Supervised Contrastive Learning for Multimodal sentence embeddings), that enhances the discriminative representation by strengthening the margin within the angular space while capturing varying semantics within the negative. Experimental results on widely used Semantic Textual Similarity (STS) benchmarks demonstrate the effectiveness of our approach.
Abstract:Hierarchical topic modeling aims to discover latent topics from a corpus and organize them into a hierarchy to understand documents with desirable semantic granularity. However, existing work struggles with producing topic hierarchies of low affinity, rationality, and diversity, which hampers document understanding. To overcome these challenges, we in this paper propose Transport Plan and Context-aware Hierarchical Topic Model (TraCo). Instead of early simple topic dependencies, we propose a transport plan dependency method. It constrains dependencies to ensure their sparsity and balance, and also regularizes topic hierarchy building with them. This improves affinity and diversity of hierarchies. We further propose a context-aware disentangled decoder. Rather than previously entangled decoding, it distributes different semantic granularity to topics at different levels by disentangled decoding. This facilitates the rationality of hierarchies. Experiments on benchmark datasets demonstrate that our method surpasses state-of-the-art baselines, effectively improving the affinity, rationality, and diversity of hierarchical topic modeling with better performance on downstream tasks.
Abstract:Fully fine-tuning pretrained large-scale transformer models has become a popular paradigm for video-language modeling tasks, such as temporal language grounding and video-language summarization. With a growing number of tasks and limited training data, such full fine-tuning approach leads to costly model storage and unstable training. To overcome these shortcomings, we introduce lightweight adapters to the pre-trained model and only update them at fine-tuning time. However, existing adapters fail to capture intrinsic temporal relations among video frames or textual words. Moreover, they neglect the preservation of critical task-related information that flows from the raw video-language input into the adapter's low-dimensional space. To address these issues, we first propose a novel REcurrent ADapter (READ) that employs recurrent computation to enable temporal modeling capability. Second, we propose Partial Video-Language Alignment (PVLA) objective via the use of partial optimal transport to maintain task-related information flowing into our READ modules. We validate our READ-PVLA framework through extensive experiments where READ-PVLA significantly outperforms all existing fine-tuning strategies on multiple low-resource temporal language grounding and video-language summarization benchmarks.
Abstract:Temporal Language Grounding seeks to localize video moments that semantically correspond to a natural language query. Recent advances employ the attention mechanism to learn the relations between video moments and the text query. However, naive attention might not be able to appropriately capture such relations, resulting in ineffective distributions where target video moments are difficult to separate from the remaining ones. To resolve the issue, we propose an energy-based model framework to explicitly learn moment-query distributions. Moreover, we propose DemaFormer, a novel Transformer-based architecture that utilizes exponential moving average with a learnable damping factor to effectively encode moment-query inputs. Comprehensive experiments on four public temporal language grounding datasets showcase the superiority of our methods over the state-of-the-art baselines.
Abstract:The effectiveness of a model is heavily reliant on the quality of the fusion representation of multiple modalities in multimodal sentiment analysis. Moreover, each modality is extracted from raw input and integrated with the rest to construct a multimodal representation. Although previous methods have proposed multimodal representations and achieved promising results, most of them focus on forming positive and negative pairs, neglecting the variation in sentiment scores within the same class. Additionally, they fail to capture the significance of unimodal representations in the fusion vector. To address these limitations, we introduce a framework called Supervised Angular-based Contrastive Learning for Multimodal Sentiment Analysis. This framework aims to enhance discrimination and generalizability of the multimodal representation and overcome biases in the fusion vector's modality. Our experimental results, along with visualizations on two widely used datasets, demonstrate the effectiveness of our approach.
Abstract:Language models have been supervised with both language-only objective and visual grounding in existing studies of visual-grounded language learning. However, due to differences in the distribution and scale of visual-grounded datasets and language corpora, the language model tends to mix up the context of the tokens that occurred in the grounded data with those that do not. As a result, during representation learning, there is a mismatch between the visual information and the contextual meaning of the sentence. To overcome this limitation, we propose GroundedBERT - a grounded language learning method that enhances the BERT representation with visually grounded information. GroundedBERT comprises two components: (i) the original BERT which captures the contextual representation of words learned from the language corpora, and (ii) a visual grounding module which captures visual information learned from visual-grounded datasets. Moreover, we employ Optimal Transport (OT), specifically its partial variant, to solve the fractional alignment problem between the two modalities. Our proposed method significantly outperforms the baseline language models on various language tasks of the GLUE and SQuAD datasets.
Abstract:Multimodal Review Helpfulness Prediction (MRHP) aims to rank product reviews based on predicted helpfulness scores and has been widely applied in e-commerce via presenting customers with useful reviews. Previous studies commonly employ fully-connected neural networks (FCNNs) as the final score predictor and pairwise loss as the training objective. However, FCNNs have been shown to perform inefficient splitting for review features, making the model difficult to clearly differentiate helpful from unhelpful reviews. Furthermore, pairwise objective, which works on review pairs, may not completely capture the MRHP goal to produce the ranking for the entire review list, and possibly induces low generalization during testing. To address these issues, we propose a listwise attention network that clearly captures the MRHP ranking context and a listwise optimization objective that enhances model generalization. We further propose gradient-boosted decision tree as the score predictor to efficaciously partition product reviews' representations. Extensive experiments demonstrate that our method achieves state-of-the-art results and polished generalization performance on two large-scale MRHP benchmark datasets.
Abstract:Modern Review Helpfulness Prediction systems are dependent upon multiple modalities, typically texts and images. Unfortunately, those contemporary approaches pay scarce attention to polish representations of cross-modal relations and tend to suffer from inferior optimization. This might cause harm to model's predictions in numerous cases. To overcome the aforementioned issues, we propose Multimodal Contrastive Learning for Multimodal Review Helpfulness Prediction (MRHP) problem, concentrating on mutual information between input modalities to explicitly elaborate cross-modal relations. In addition, we introduce Adaptive Weighting scheme for our contrastive learning approach in order to increase flexibility in optimization. Lastly, we propose Multimodal Interaction module to address the unalignment nature of multimodal data, thereby assisting the model in producing more reasonable multimodal representations. Experimental results show that our method outperforms prior baselines and achieves state-of-the-art results on two publicly available benchmark datasets for MRHP problem.