Abstract:Incorporating known symmetries in data into machine learning models has consistently improved predictive accuracy, robustness, and generalization. However, achieving exact invariance to specific symmetries typically requires designing bespoke architectures for each group of symmetries, limiting scalability and preventing knowledge transfer across related symmetries. In the case of the space groups, symmetries critical to modeling crystalline solids in materials science and condensed matter physics, this challenge is particularly salient as there are 230 such groups in three dimensions. In this work we present a new approach to such crystallographic symmetries by developing a single machine learning architecture that is capable of adapting its weights automatically to enforce invariance to any input space group. Our approach is based on constructing symmetry-adapted Fourier bases through an explicit characterization of constraints that group operations impose on Fourier coefficients. Encoding these constraints into a neural network layer enables weight sharing across different space groups, allowing the model to leverage structural similarities between groups and overcome data sparsity when limited measurements are available for specific groups. We demonstrate the effectiveness of this approach in achieving competitive performance on material property prediction tasks and performing zero-shot learning to generalize to unseen groups.
Abstract:In recent years, multiple notions of algorithmic fairness have arisen. One such notion is individual fairness (IF), which requires that individuals who are similar receive similar treatment. In parallel, matrix estimation (ME) has emerged as a natural paradigm for handling noisy data with missing values. In this work, we connect the two concepts. We show that pre-processing data using ME can improve an algorithm's IF without sacrificing performance. Specifically, we show that using a popular ME method known as singular value thresholding (SVT) to pre-process the data provides a strong IF guarantee under appropriate conditions. We then show that, under analogous conditions, SVT pre-processing also yields estimates that are consistent and approximately minimax optimal. As such, the ME pre-processing step does not, under the stated conditions, increase the prediction error of the base algorithm, i.e., does not impose a fairness-performance trade-off. We verify these results on synthetic and real data.