Abstract:Capturing comprehensive statistics of nonperiodic asynchronous impulsive noise is a critical issue in enhancing impulse noise processing for narrowband powerline communication (NB-PLC) transceivers. However, existing mathematical noise generative models capture only some of the characteristics of additive noise. Therefore, we propose a generative adversarial network (GAN), called the noise-generation GAN (NGGAN), that learns the complicated characteristics of practically measured noise samples for data augmentation. To closely match the statistics of complicated noise in NB-PLC systems, we measured the NB-PLC noise via the analog coupling and bandpass filtering circuits of a commercial NB-PLC modem to build a realistic dataset. Specifically, the NGGAN design approaches based on the practically measured dataset are as follows: (i) we design the length of input signals that the NGGAN model can fit to facilitate cyclo-stationary noise generation. (ii) Wasserstein distance is used as a loss function to enhance the similarity between the generated noise and the training dataset and ensure that the sample diversity is sufficient for various applications. (iii) To measure the similarity performance of the GAN-based models based on mathematical and practically measured datasets, we perform quantitative and qualitative analyses. The training datasets include (1) a piecewise spectral cyclo-stationary Gaussian model (PSCGM), (2) a frequency-shift (FRESH) filter, and (3) practical measurements from NB-PLC systems. Simulation results demonstrate that the proposed NGGAN trained using waveform characteristics is closer to the practically measured dataset in terms of the quality of the generated noise.
Abstract:Class imbalance is a challenging issue in practical classification problems for deep learning models as well as traditional models. Traditionally successful countermeasures such as synthetic over-sampling have had limited success with complex, structured data handled by deep learning models. In this paper, we propose Deep Over-sampling (DOS), a framework for extending the synthetic over-sampling method to exploit the deep feature space acquired by a convolutional neural network (CNN). Its key feature is an explicit, supervised representation learning, for which the training data presents each raw input sample with a synthetic embedding target in the deep feature space, which is sampled from the linear subspace of in-class neighbors. We implement an iterative process of training the CNN and updating the targets, which induces smaller in-class variance among the embeddings, to increase the discriminative power of the deep representation. We present an empirical study using public benchmarks, which shows that the DOS framework not only counteracts class imbalance better than the existing method, but also improves the performance of the CNN in the standard, balanced settings.