Abstract:We study the problem of deciding whether, and when an organization should replace a trained incumbent model with a challenger relying on newly available features. We develop a unified economic and statistical framework that links learning-curve dynamics, data-acquisition and retraining costs, and discounting of future gains. First, we characterize the optimal switching time in stylized settings and derive closed-form expressions that quantify how horizon length, learning-curve curvature, and cost differentials shape the optimal decision. Second, we propose three practical algorithms: a one-shot baseline, a greedy sequential method, and a look-ahead sequential method. Using a real-world credit-scoring dataset with gradually arriving alternative data, we show that (i) optimal switching times vary systematically with cost parameters and learning-curve behavior, and (ii) the look-ahead sequential method outperforms other methods and is able to approach in value an oracle with full foresight. Finally, we establish finite-sample guarantees, including conditions under which the sequential look-ahead method achieve sublinear regret relative to that oracle. Our results provide an operational blueprint for economically sound model transitions as new data sources become available.
Abstract:In credit markets, screening algorithms aim to discriminate between good-type and bad-type borrowers. However, when doing so, they also often discriminate between individuals sharing a protected attribute (e.g. gender, age, racial origin) and the rest of the population. In this paper, we show how (1) to test whether there exists a statistically significant difference between protected and unprotected groups, which we call lack of fairness and (2) to identify the variables that cause the lack of fairness. We then use these variables to optimize the fairness-performance trade-off. Our framework provides guidance on how algorithmic fairness can be monitored by lenders, controlled by their regulators, and improved for the benefit of protected groups.