Abstract:Standard Behavior Cloning (BC) fails to learn multimodal driving decisions, where multiple valid actions exist for the same scenario. We explore Implicit Behavioral Cloning (IBC) with Energy-Based Models (EBMs) to better capture this multimodality. We propose Data-Augmented IBC (DA-IBC), which improves learning by perturbing expert actions to form the counterexamples of IBC training and using better initialization for derivative-free inference. Experiments in the CARLA simulator with Bird's-Eye View inputs demonstrate that DA-IBC outperforms standard IBC in urban driving tasks designed to evaluate multimodal behavior learning in a test environment. The learned energy landscapes are able to represent multimodal action distributions, which BC fails to achieve.
Abstract:Object pose estimation from a single view remains a challenging problem. In particular, partial observability, occlusions, and object symmetries eventually result in pose ambiguity. To account for this multimodality, this work proposes training a diffusion-based generative model for 6D object pose estimation. During inference, the trained generative model allows for sampling multiple particles, i.e., pose hypotheses. To distill this information into a single pose estimate, we propose two novel and effective pose selection strategies that do not require any additional training or computationally intensive operations. Moreover, while many existing methods for pose estimation primarily focus on the image domain and only incorporate depth information for final pose refinement, our model solely operates on point cloud data. The model thereby leverages recent advancements in point cloud processing and operates upon an SE(3)-equivariant latent space that forms the basis for the particle selection strategies and allows for improved inference times. Our thorough experimental results demonstrate the competitive performance of our approach on the Linemod dataset and showcase the effectiveness of our design choices. Code is available at https://github.com/zitronian/6DPoseDiffusion .