Abstract:Recent advances in large language models (LLMs) have opened the door to culture-aware language tasks. We introduce the novel problem of adapting wine reviews across Chinese and English, which goes beyond literal translation by incorporating regional taste preferences and culture-specific flavor descriptors. In a case study on cross-cultural wine review adaptation, we compile the first parallel corpus of professional reviews, containing 8k Chinese and 16k Anglophone reviews. We benchmark both neural-machine-translation baselines and state-of-the-art LLMs with automatic metrics and human evaluation. For the latter, we propose three culture-oriented criteria -- Cultural Proximity, Cultural Neutrality, and Cultural Genuineness -- to assess how naturally a translated review resonates with target-culture readers. Our analysis shows that current models struggle to capture cultural nuances, especially in translating wine descriptions across different cultures. This highlights the challenges and limitations of translation models in handling cultural content.
Abstract:Battery discharge capacity forecasting is critically essential for the applications of lithium-ion batteries. The capacity degeneration can be treated as the memory of the initial battery state of charge from the data point of view. The streaming sensor data collected by battery management systems (BMS) reflect the usable battery capacity degradation rates under various operational working conditions. The battery capacity in different cycles can be measured with the temporal patterns extracted from the streaming sensor data based on the attention mechanism. The attention-based similarity regarding the first cycle can describe the battery capacity degradation in the following cycles. The deep degradation network (DDN) is developed with the attention mechanism to measure similarity and predict battery capacity. The DDN model can extract the degeneration-related temporal patterns from the streaming sensor data and perform the battery capacity prediction efficiently online in real-time. Based on the MIT-Stanford open-access battery aging dataset, the root-mean-square error of the capacity estimation is 1.3 mAh. The mean absolute percentage error of the proposed DDN model is 0.06{\%}. The DDN model also performance well in the Oxford Battery Degradation Dataset with dynamic load profiles. Therefore, the high accuracy and strong robustness of the proposed algorithm are verified.