Abstract:Recent advances in large language models (LLMs) have opened the door to culture-aware language tasks. We introduce the novel problem of adapting wine reviews across Chinese and English, which goes beyond literal translation by incorporating regional taste preferences and culture-specific flavor descriptors. In a case study on cross-cultural wine review adaptation, we compile the first parallel corpus of professional reviews, containing 8k Chinese and 16k Anglophone reviews. We benchmark both neural-machine-translation baselines and state-of-the-art LLMs with automatic metrics and human evaluation. For the latter, we propose three culture-oriented criteria -- Cultural Proximity, Cultural Neutrality, and Cultural Genuineness -- to assess how naturally a translated review resonates with target-culture readers. Our analysis shows that current models struggle to capture cultural nuances, especially in translating wine descriptions across different cultures. This highlights the challenges and limitations of translation models in handling cultural content.