Abstract:Existing Reinforcement Learning from Verifiable Rewards (RLVR) methods, such as Group Relative Policy Optimization (GRPO), have achieved remarkable progress in improving the reasoning capabilities of Large Reasoning Models (LRMs). However, they exhibit limited exploration due to reliance on on-policy rollouts where confined to the current policy's distribution, resulting in narrow trajectory diversity. Recent approaches attempt to expand policy coverage by incorporating trajectories generated from stronger expert models, yet this reliance increases computational cost and such advaned models are often inaccessible. To address these issues, we propose In-Context Steered Policy Optimization (ICPO), a unified framework that leverages the inherent in-context learning capability of LRMs to provide expert guidance using existing datasets. ICPO introduces Mixed-Policy GRPO with Implicit Expert Forcing, which expands exploration beyond the current policy distribution without requiring advanced LRM trajectories. To further stabilize optimization, ICPO integrates Expert Region Reject Sampling to filter unreliable off-policy trajectories and Annealed Expert-Bonus Reward Shaping to balance early expert guidance with later autonomous improvement. Results demonstrate that ICPO consistently enhances reinforcement learning performance and training stability on mathematical reasoning benchmarks, revealing a scalable and effective RLVR paradigm for LRMs.
Abstract:Reinforcement learning with verifiable rewards (RLVR) has significantly boosted the reasoning capability of large language models (LLMs) recently. However, existing RLVR approaches merely train LLMs based on their own generated responses and are constrained by the initial capability of LLMs, thus prone to exploration stagnation, in which LLMs fail to solve more training problems and cannot further learn from the training data. Some work tries to address this by leveraging off-policy solutions to training problems but requires external guidance from experts which suffers from limited availability. In this work, we propose LTE (Learning to reason from Trial and Error), an approach hinting LLMs with their previously self-generated incorrect answers and problem of overlong responses, which does not require any external expert guidance. Experiments validate the effectiveness of LTE, which outperforms the normal group relative policy optimization (GRPO) by 6.38 in Pass@1 and 9.00 in Pass@k on average across six mathematics benchmarks for Qwen3-4B-Base. Further analysis confirms that LTE successfully mitigates the problem of exploration stagnation and enhances both exploitation and exploration during training.




Abstract:With the help of in-context learning (ICL), large language models (LLMs) have achieved impressive performance across various tasks. However, the function of descriptive instructions during ICL remains under-explored. In this work, we propose an ensemble prompt framework to describe the selection criteria of multiple in-context examples, and preliminary experiments on machine translation (MT) across six translation directions confirm that this framework boosts ICL perfromance. But to our surprise, LLMs might not necessarily care what the descriptions actually say, and the performance gain is primarily caused by the ensemble format, since the framework could lead to improvement even with random descriptive nouns. We further apply this new ensemble prompt on a range of commonsense, math, logical reasoning and hallucination tasks with three LLMs and achieve promising results, suggesting again that designing a proper prompt format would be much more effective and efficient than paying effort into specific descriptions. Our code will be publicly available once this paper is published.




Abstract:In-context learning (ICL) greatly improves the performance of large language models (LLMs) on various down-stream tasks, where the improvement highly depends on the quality of demonstrations. In this work, we introduce syntactic knowledge to select better in-context examples for machine translation (MT). We propose a new strategy, namely Syntax-augmented COverage-based In-context example selection (SCOI), leveraging the deep syntactic structure beyond conventional word matching. Specifically, we measure the set-level syntactic coverage by computing the coverage of polynomial terms with the help of a simplified tree-to-polynomial algorithm, and lexical coverage using word overlap. Furthermore, we devise an alternate selection approach to combine both coverage measures, taking advantage of syntactic and lexical information. We conduct experiments with two multi-lingual LLMs on six translation directions. Empirical results show that our proposed SCOI obtains the highest average COMET score among all learning-free methods, indicating that combining syntactic and lexical coverage successfully helps to select better in-context examples for MT.
Abstract:In the era of large language models (LLMs), in-context learning (ICL) stands out as an effective prompting strategy that explores LLMs' potency across various tasks. However, applying LLMs to grammatical error correction (GEC) is still a challenging task. In this paper, we propose a novel ungrammatical-syntax-based in-context example selection strategy for GEC. Specifically, we measure similarity of sentences based on their syntactic structures with diverse algorithms, and identify optimal ICL examples sharing the most similar ill-formed syntax to the test input. Additionally, we carry out a two-stage process to further improve the quality of selection results. On benchmark English GEC datasets, empirical results show that our proposed ungrammatical-syntax-based strategies outperform commonly-used word-matching or semantics-based methods with multiple LLMs. This indicates that for a syntax-oriented task like GEC, paying more attention to syntactic information can effectively boost LLMs' performance. Our code will be publicly available after the publication of this paper.




Abstract:In-context learning (ICL) is the trending prompting strategy in the era of large language models (LLMs), where a few examples are demonstrated to evoke LLMs' power for a given task. How to select informative examples remains an open issue. Previous works on in-context example selection for machine translation (MT) focus on superficial word-level features while ignoring deep syntax-level knowledge. In this paper, we propose a syntax-based in-context example selection method for MT, by computing the syntactic similarity between dependency trees using Polynomial Distance. In addition, we propose an ensemble strategy combining examples selected by both word-level and syntax-level criteria. Experimental results between English and 6 common languages indicate that syntax can effectively enhancing ICL for MT, obtaining the highest COMET scores on 11 out of 12 translation directions.




Abstract:Model ensemble has been in widespread use for Grammatical Error Correction (GEC), boosting model performance. We hypothesize that model ensemble based on the perplexity (PPL) computed by pre-trained language models (PLMs) should benefit the GEC system. To this end, we explore several ensemble strategies based on strong PLMs with four sophisticated single models. However, the performance does not improve but even gets worse after the PLM-based ensemble. This surprising result sets us doing a detailed analysis on the data and coming up with some insights on GEC. The human references of correct sentences is far from sufficient in the test data, and the gap between a correct sentence and an idiomatic one is worth our attention. Moreover, the PLM-based ensemble strategies provide an effective way to extend and improve GEC benchmark data. Our source code is available at https://github.com/JamyDon/PLM-based-CGEC-Model-Ensemble.