Abstract:The rapid growth of data centers has made large electronic load (LEL) modeling increasingly important for power system analysis. Such loads are characterized by fast workload-driven variability and protection-driven disconnection and reconnection behavior that are not captured by conventional load models. Existing data center load modeling includes physics-based approaches, which provide interpretable structure for grid simulation, and data-driven approaches, which capture empirical workload variability from data. However, physics-based models are typically uncalibrated to facility-level operation, while trajectory alignment in data-driven methods often leads to overfitting and unrealistic dynamic behavior. To resolve these limitations, we design the framework to leverage both physics-based structure and data-driven adaptability. The physics-based structure is parameterized to enable data-driven pattern-consistent calibration from real operational data, supporting facility-level grid planning. We further show that trajectory-level alignment is limited for inherently stochastic data center loads. Therefore, we design the calibration to align temporal and statistical patterns using temporal contrastive learning (TCL). This calibration is performed locally at the facility, and only calibrated parameters are shared with utilities, preserving data privacy. The proposed load model is calibrated by real-world operational load data from the MIT Supercloud, ASU Sol, Blue Waters, and ASHRAE datasets. Then it is integrated into the ANDES platform and evaluated on the IEEE 39-bus, NPCC 140-bus, and WECC 179-bus systems. We find that interactions among LELs can fundamentally alter post-disturbance recovery behavior, producing compound disconnection-reconnection dynamics and delayed stabilization that are not captured by uncalibrated load models.
Abstract:Foundation models have transformed language, vision, and time series data analysis, yet progress on dynamic predictions for physical systems remains limited. Given the complexity of physical constraints, two challenges stand out. $(i)$ Physics-computation scalability: physics-informed learning can enforce physical regularization, but its computation (e.g., ODE integration) does not scale to extensive systems. $(ii)$ Knowledge-sharing efficiency: the attention mechanism is primarily computed within each system, which limits the extraction of shared ODE structures across systems. We show that enforcing ODE consistency does not require expensive nonlinear integration: a token-wise locally linear ODE representation preserves physical fidelity while scaling to foundation-model regimes. Thus, we propose novel token representations that respect locally linear ODE evolution. Such linearity substantially accelerates integration while accurately approximating the local data manifold. Second, we introduce a simple yet effective inter-system attention that augments attention with a common structure hub (CSH) that stores shared tokens and aggregates knowledge across systems. The resulting model, termed LASS-ODE (\underline{LA}rge-\underline{S}cale \underline{S}mall \underline{ODE}), is pretrained on our $40$GB ODE trajectory collections to enable strong in-domain performance, zero-shot generalization across diverse ODE systems, and additional improvements through fine-tuning.
Abstract:Line outage identification in distribution grids is essential for sustainable grid operation. In this work, we propose a practical yet robust detection approach that utilizes only readily available voltage magnitudes, eliminating the need for costly phase angles or power flow data. Given the sensor data, many existing detection methods based on change-point detection require prior knowledge of outage patterns, which are unknown for real-world outage scenarios. To remove this impractical requirement, we propose a data-driven method to learn the parameters of the post-outage distribution through gradient descent. However, directly using gradient descent presents feasibility issues. To address this, we modify our approach by adding a Bregman divergence constraint to control the trajectory of the parameter updates, which eliminates the feasibility problems. As timely operation is the key nowadays, we prove that the optimal parameters can be learned with convergence guarantees via leveraging the statistical and physical properties of voltage data. We evaluate our approach using many representative distribution grids and real load profiles with 17 outage configurations. The results show that we can detect and localize the outage in a timely manner with only voltage magnitudes and without assuming a prior knowledge of outage patterns.