Abstract:Large Language Models (LLMs) have shown remarkable capabilities in text and multimodal processing, yet they fundamentally lack physical awareness--understanding of real-world physical phenomena. In this work, we present ACORN, a framework that teaches LLMs physical awareness through sound, focusing on fundamental physical phenomena like the Doppler effect, multipath effect, and spatial relationships. To overcome data scarcity, ACORN introduce a physics-based simulator combining real-world sound sources with controlled physical channels to generate diverse training data. Using this simulator, we build AQA-PHY, a comprehensive Audio Question-Answer dataset, and propose an audio encoder that processes both magnitude and phase information. By connecting our audio encoder to state-of-the-art LLMs, we demonstrate reasonable results in both simulated and real-world tasks, such as line-of-sight detection, Doppler effect estimation, and Direction-of-Arrival estimation, paving the way for enabling LLMs to understand physical world.
Abstract:KV cache techniques in Transformer models aim to reduce redundant computations at the expense of substantially increased memory usage, making KV cache compression an important and popular research topic. Recently, state-of-the-art KV cache compression methods implement imbalanced, per-head allocation algorithms that dynamically adjust the KV cache budget for each attention head, achieving excellent performance in single-GPU scenarios. However, we observe that such imbalanced compression leads to significant load imbalance when deploying multi-GPU inference, as some GPUs become overburdened while others remain underutilized. In this paper, we propose FairKV, a method designed to ensure fair memory usage among attention heads in systems employing imbalanced KV cache compression. The core technique of FairKV is Fair-Copying, which replicates a small subset of memory-intensive attention heads across GPUs using data parallelism to mitigate load imbalance. Our experiments on popular models, including LLaMA 70b and Mistral 24b model, demonstrate that FairKV increases throughput by 1.66x compared to standard tensor parallelism inference. Our code will be released as open source upon acceptance.