Abstract:In human-AI collaboration, a central challenge is deciding whether the AI should handle a task, be deferred to a human expert, or be addressed through collaborative effort. Existing Learning to Defer approaches typically make binary choices between AI and humans, neglecting their complementary strengths. They also lack interpretability, a critical property in high-stakes scenarios where users must understand and, if necessary, correct the model's reasoning. To overcome these limitations, we propose Defer-and-Complement Decision-Making via Decoupled Concept Bottleneck Models (DeCoDe), a concept-driven framework for human-AI collaboration. DeCoDe makes strategy decisions based on human-interpretable concept representations, enhancing transparency throughout the decision process. It supports three flexible modes: autonomous AI prediction, deferral to humans, and human-AI collaborative complementarity, selected via a gating network that takes concept-level inputs and is trained using a novel surrogate loss that balances accuracy and human effort. This approach enables instance-specific, interpretable, and adaptive human-AI collaboration. Experiments on real-world datasets demonstrate that DeCoDe significantly outperforms AI-only, human-only, and traditional deferral baselines, while maintaining strong robustness and interpretability even under noisy expert annotations.
Abstract:Agents have demonstrated their potential in scientific reasoning tasks through large language models. However, they often face challenges such as insufficient accuracy and degeneration of thought when handling complex reasoning tasks, which impede their performance. To overcome these issues, we propose the Reactive and Reflection agents with Multi-Path Reasoning (RR-MP) Framework, aimed at enhancing the reasoning capabilities of LLMs. Our approach improves scientific reasoning accuracy by employing a multi-path reasoning mechanism where each path consists of a reactive agent and a reflection agent that collaborate to prevent degeneration of thought inherent in single-agent reliance. Additionally, the RR-MP framework does not require additional training; it utilizes multiple dialogue instances for each reasoning path and a separate summarizer to consolidate insights from all paths. This design integrates diverse perspectives and strengthens reasoning across each path. We conducted zero-shot and few-shot evaluations on tasks involving moral scenarios, college-level physics, and mathematics. Experimental results demonstrate that our method outperforms baseline approaches, highlighting the effectiveness and advantages of the RR-MP framework in managing complex scientific reasoning tasks.