Abstract:Accurate and interpretable prediction of estimated glomerular filtration rate (eGFR) is essential for managing chronic kidney disease (CKD) and supporting clinical decisions. Recent advances in Large Multimodal Models (LMMs) have shown strong potential in clinical prediction tasks due to their ability to process visual and textual information. However, challenges related to deployment cost, data privacy, and model reliability hinder their adoption. In this study, we propose a collaborative framework that enhances the performance of open-source LMMs for eGFR forecasting while generating clinically meaningful explanations. The framework incorporates visual knowledge transfer, abductive reasoning, and a short-term memory mechanism to enhance prediction accuracy and interpretability. Experimental results show that the proposed framework achieves predictive performance and interpretability comparable to proprietary models. It also provides plausible clinical reasoning processes behind each prediction. Our method sheds new light on building AI systems for healthcare that combine predictive accuracy with clinically grounded interpretability.
Abstract:Machine learning models are often criticized for their black-box nature, raising concerns about their applicability in critical decision-making scenarios. Consequently, there is a growing demand for interpretable models in such contexts. In this study, we introduce Model-based Deep Rule Forests (mobDRF), an interpretable representation learning algorithm designed to extract transparent models from data. By leveraging IF-THEN rules with multi-level logic expressions, mobDRF enhances the interpretability of existing models without compromising accuracy. We apply mobDRF to identify key risk factors for cognitive decline in an elderly population, demonstrating its effectiveness in subgroup analysis and local model optimization. Our method offers a promising solution for developing trustworthy and interpretable machine learning models, particularly valuable in fields like healthcare, where understanding differential effects across patient subgroups can lead to more personalized and effective treatments.