Abstract:Federated Learning (FL) is an emerging distributed machine learning paradigm, where the collaborative training of a model involves dynamic participation of devices to achieve broad objectives. In contrast, classical machine learning (ML) typically requires data to be located on-premises for training, whereas FL leverages numerous user devices to train a shared global model without the need to share private data. Current robotic manipulation tasks are constrained by the individual capabilities and speed of robots due to limited low-latency computing resources. Consequently, the concept of cloud robotics has emerged, allowing robotic applications to harness the flexibility and reliability of computing resources, effectively alleviating their computational demands across the cloud-edge continuum. Undoubtedly, within this distributed computing context, as exemplified in cloud robotic manipulation scenarios, FL offers manifold advantages while also presenting several challenges and opportunities. In this paper, we present fundamental concepts of FL and their connection to cloud robotic manipulation. Additionally, we envision the opportunities and challenges associated with realizing efficient and reliable cloud robotic manipulation at scale through FL, where researchers adopt to design and verify FL models in either centralized or decentralized settings.
Abstract:An intriguing property of deep neural networks is their inherent vulnerability to adversarial inputs, which significantly hinders their application in security-critical domains. Most existing detection methods attempt to use carefully engineered patterns to distinguish adversarial inputs from their genuine counterparts, which however can often be circumvented by adaptive adversaries. In this work, we take a completely different route by leveraging the definition of adversarial inputs: while deceiving for deep neural networks, they are barely discernible for human visions. Building upon recent advances in interpretable models, we construct a new detection framework that contrasts an input's interpretation against its classification. We validate the efficacy of this framework through extensive experiments using benchmark datasets and attacks. We believe that this work opens a new direction for designing adversarial input detection methods.