Abstract:Federated Learning (FL) is an emerging distributed machine learning paradigm, where the collaborative training of a model involves dynamic participation of devices to achieve broad objectives. In contrast, classical machine learning (ML) typically requires data to be located on-premises for training, whereas FL leverages numerous user devices to train a shared global model without the need to share private data. Current robotic manipulation tasks are constrained by the individual capabilities and speed of robots due to limited low-latency computing resources. Consequently, the concept of cloud robotics has emerged, allowing robotic applications to harness the flexibility and reliability of computing resources, effectively alleviating their computational demands across the cloud-edge continuum. Undoubtedly, within this distributed computing context, as exemplified in cloud robotic manipulation scenarios, FL offers manifold advantages while also presenting several challenges and opportunities. In this paper, we present fundamental concepts of FL and their connection to cloud robotic manipulation. Additionally, we envision the opportunities and challenges associated with realizing efficient and reliable cloud robotic manipulation at scale through FL, where researchers adopt to design and verify FL models in either centralized or decentralized settings.
Abstract:Vector-based word representations help countless Natural Language Processing (NLP) tasks capture both semantic and syntactic regularities of the language. In this paper, we present the characteristics of existing word embedding approaches and analyze them with regards to many classification tasks. We categorize the methods into two main groups - Traditional approaches mostly use matrix factorization to produce word representations, and they are not able to capture the semantic and syntactic regularities of the language very well. Neural-Network based approaches, on the other hand, can capture sophisticated regularities of the language and preserve the word relationships in the generated word representations. We report experimental results on multiple classification tasks and highlight the scenarios where one approach performs better than the rest.