Abstract:6G must be designed to withstand, adapt to, and evolve amid prolonged, complex disruptions. Mobile networks' shift from efficiency-first to sustainability-aware has motivated this white paper to assert that resilience is a primary design goal, alongside sustainability and efficiency, encompassing technology, architecture, and economics. We promote resilience by analysing dependencies between mobile networks and other critical systems, such as energy, transport, and emergency services, and illustrate how cascading failures spread through infrastructures. We formalise resilience using the 3R framework: reliability, robustness, resilience. Subsequently, we translate this into measurable capabilities: graceful degradation, situational awareness, rapid reconfiguration, and learning-driven improvement and recovery. Architecturally, we promote edge-native and locality-aware designs, open interfaces, and programmability to enable islanded operations, fallback modes, and multi-layer diversity (radio, compute, energy, timing). Key enablers include AI-native control loops with verifiable behaviour, zero-trust security rooted in hardware and supply-chain integrity, and networking techniques that prioritise critical traffic, time-sensitive flows, and inter-domain coordination. Resilience also has a techno-economic aspect: open platforms and high-quality complementors generate ecosystem externalities that enhance resilience while opening new markets. We identify nine business-model groups and several patterns aligned with the 3R objectives, and we outline governance and standardisation. This white paper serves as an initial step and catalyst for 6G resilience. It aims to inspire researchers, professionals, government officials, and the public, providing them with the essential components to understand and shape the development of 6G resilience.
Abstract:The evolution of wireless communication systems will be fundamentally impacted by an open radio access network (O-RAN), a new concept defining an intelligent architecture with enhanced flexibility, openness, and the ability to slice services more efficiently. For all its promises, and like any technological advancement, O-RAN is not without risks that need to be carefully assessed and properly addressed to accelerate its wide adoption in future mobile networks. In this paper, we present an in-depth security analysis of the O-RAN architecture, discussing the potential threats that may arise in the different O-RAN architecture layers and their impact on the Confidentiality, Integrity, and Availability (CIA) triad. We also promote the potential of zero trust, Moving Target Defense (MTD), blockchain, and large language models(LLM) technologies in fortifying O-RAN's security posture. Furthermore, we numerically demonstrate the effectiveness of MTD in empowering robust deep reinforcement learning methods for dynamic network slice admission control in the O-RAN architecture. Moreover, we examine the effect of explainable AI (XAI) based on LLMs in securing the system.
Abstract:Federated Learning (FL) enables training of a global model from distributed data, while preserving data privacy. However, the singular-model based operation of FL is open with uploading poisoned models compatible with the global model structure and can be exploited as a vulnerability to conduct model poisoning attacks. This paper proposes a multi-model based FL as a proactive mechanism to enhance the opportunity of model poisoning attack mitigation. A master model is trained by a set of slave models. To enhance the opportunity of attack mitigation, the structure of client models dynamically change within learning epochs, and the supporter FL protocol is provided. For a MEC system, the model selection problem is modeled as an optimization to minimize loss and recognition time, while meeting a robustness confidence. In adaption with dynamic network condition, a deep reinforcement learning based model selection is proposed. For a DDoS attack detection scenario, results illustrate a competitive accuracy gain under poisoning attack with the scenario that the system is without attack, and also a potential of recognition time improvement.