Abstract:Large language models (LLMs) are widely applied in chatbots, code generators, and search engines. Workloads such as chain-of-thought, complex reasoning, and agent services significantly increase the inference cost by invoking the model repeatedly. Optimization methods such as parallelism, compression, and caching have been adopted to reduce costs, but the diverse service requirements make it hard to select the right method. Recently, specialized LLM inference engines have emerged as a key component for integrating the optimization methods into service-oriented infrastructures. However, a systematic study on inference engines is still lacking. This paper provides a comprehensive evaluation of 25 open-source and commercial inference engines. We examine each inference engine in terms of ease-of-use, ease-of-deployment, general-purpose support, scalability, and suitability for throughput- and latency-aware computation. Furthermore, we explore the design goals of each inference engine by investigating the optimization techniques it supports. In addition, we assess the ecosystem maturity of open source inference engines and handle the performance and cost policy of commercial solutions. We outline future research directions that include support for complex LLM-based services, support of various hardware, and enhanced security, offering practical guidance to researchers and developers in selecting and designing optimized LLM inference engines. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/sihyeong/Awesome-LLM-Inference-Engine
Abstract:Phishing often targets victims through visually perturbed texts to bypass security systems. The noise contained in these texts functions as an adversarial attack, designed to deceive language models and hinder their ability to accurately interpret the content. However, since it is difficult to obtain sufficient phishing cases, previous studies have used synthetic datasets that do not contain real-world cases. In this study, we propose the BitAbuse dataset, which includes real-world phishing cases, to address the limitations of previous research. Our dataset comprises a total of 325,580 visually perturbed texts. The dataset inputs are drawn from the raw corpus, consisting of visually perturbed sentences and sentences generated through an artificial perturbation process. Each input sentence is labeled with its corresponding ground truth, representing the restored, non-perturbed version. Language models trained on our proposed dataset demonstrated significantly better performance compared to previous methods, achieving an accuracy of approximately 96%. Our analysis revealed a significant gap between real-world and synthetic examples, underscoring the value of our dataset for building reliable pre-trained models for restoration tasks. We release the BitAbuse dataset, which includes real-world phishing cases annotated with visual perturbations, to support future research in adversarial attack defense.