Abstract:Audio processing models based on deep neural networks are susceptible to adversarial attacks even when the adversarial audio waveform is 99.9% similar to a benign sample. Given the wide application of DNN-based audio recognition systems, detecting the presence of adversarial examples is of high practical relevance. By applying anomalous pattern detection techniques in the activation space of these models, we show that 2 of the recent and current state-of-the-art adversarial attacks on audio processing systems systematically lead to higher-than-expected activation at some subset of nodes and we can detect these with up to an AUC of 0.98 with no degradation in performance on benign samples.
Abstract:Bias in data can have unintended consequences that propagate to the design, development, and deployment of machine learning models. In the financial services sector, this can result in discrimination from certain financial instruments and services. At the same time, data privacy is of paramount importance, and recent data breaches have seen reputational damage for large institutions. Presented in this paper is a trusted model-lifecycle management platform that attempts to ensure consumer data protection, anonymization, and fairness. Specifically, we examine how datasets can be reproduced using deep learning techniques to effectively retain important statistical features in datasets whilst simultaneously protecting data privacy and enabling safe and secure sharing of sensitive personal information beyond the current state-of-practice.
Abstract:Recent advances in computer vision and deep learning have led to breakthroughs in the development of automated skin image analysis. In particular, skin cancer classification models have achieved performance higher than trained expert dermatologists. However, no attempt has been made to evaluate the consistency in performance of machine learning models across populations with varying skin tones. In this paper, we present an approach to estimate skin tone in benchmark skin disease datasets, and investigate whether model performance is dependent on this measure. Specifically, we use individual typology angle (ITA) to approximate skin tone in dermatology datasets. We look at the distribution of ITA values to better understand skin color representation in two benchmark datasets: 1) the ISIC 2018 Challenge dataset, a collection of dermoscopic images of skin lesions for the detection of skin cancer, and 2) the SD-198 dataset, a collection of clinical images capturing a wide variety of skin diseases. To estimate ITA, we first develop segmentation models to isolate non-diseased areas of skin. We find that the majority of the data in the the two datasets have ITA values between 34.5{\deg} and 48{\deg}, which are associated with lighter skin, and is consistent with under-representation of darker skinned populations in these datasets. We also find no measurable correlation between performance of machine learning model and ITA values, though more comprehensive data is needed for further validation.
Abstract:Gaining insight into how deep convolutional neural network models perform image classification and how to explain their outputs have been a concern to computer vision researchers and decision makers. These deep models are often referred to as black box due to low comprehension of their internal workings. As an effort to developing explainable deep learning models, several methods have been proposed such as finding gradients of class output with respect to input image (sensitivity maps), class activation map (CAM), and Gradient based Class Activation Maps (Grad-CAM). These methods under perform when localizing multiple occurrences of the same class and do not work for all CNNs. In addition, Grad-CAM does not capture the entire object in completeness when used on single object images, this affect performance on recognition tasks. With the intention to create an enhanced visual explanation in terms of visual sharpness, object localization and explaining multiple occurrences of objects in a single image, we present Smooth Grad-CAM++ \footnote{Simple demo: http://35.238.22.135:5000/}, a technique that combines methods from two other recent techniques---SMOOTHGRAD and Grad-CAM++. Our Smooth Grad-CAM++ technique provides the capability of either visualizing a layer, subset of feature maps, or subset of neurons within a feature map at each instance at the inference level (model prediction process). After experimenting with few images, Smooth Grad-CAM++ produced more visually sharp maps with better localization of objects in the given input images when compared with other methods.