Abstract:Force field-based molecular dynamics (MD) simulations are indispensable for probing the structure, dynamics, and functions of biomolecular systems, including proteins and protein-ligand complexes. Despite their broad utility in drug discovery and protein engineering, the technical complexity of MD setup, encompassing parameterization, input preparation, and software configuration, remains a major barrier for widespread and efficient usage. Agentic LLMs have demonstrated their capacity to autonomously execute multi-step scientific processes, and to date, they have not successfully been used to automate protein-ligand MD workflows. Here, we present DynaMate, a modular multi-agent framework that autonomously designs and executes complete MD workflows for both protein and protein-ligand systems, and offers free energy binding affinity calculations with the MM/PB(GB)SA method. The framework integrates dynamic tool use, web search, PaperQA, and a self-correcting behavior. DynaMate comprises three specialized modules, interacting to plan the experiment, perform the simulation, and analyze the results. We evaluated its performance across twelve benchmark systems of varying complexity, assessing success rate, efficiency, and adaptability. DynaMate reliably performed full MD simulations, corrected runtime errors through iterative reasoning, and produced meaningful analyses of protein-ligand interactions. This automated framework paves the way toward standardized, scalable, and time-efficient molecular modeling pipelines for future biomolecular and drug design applications.
Abstract:Accurately predicting cellular responses to genetic perturbations is essential for understanding disease mechanisms and designing effective therapies. Yet exhaustively exploring the space of possible perturbations (e.g., multi-gene perturbations or across tissues and cell types) is prohibitively expensive, motivating methods that can generalize to unseen conditions. In this work, we explore how knowledge graphs of gene-gene relationships can improve out-of-distribution (OOD) prediction across three challenging settings: unseen single perturbations; unseen double perturbations; and unseen cell lines. In particular, we present: (i) TxPert, a new state-of-the-art method that leverages multiple biological knowledge networks to predict transcriptional responses under OOD scenarios; (ii) an in-depth analysis demonstrating the impact of graphs, model architecture, and data on performance; and (iii) an expanded benchmarking framework that strengthens evaluation standards for perturbation modeling.