Abstract:Large language models (LLMs) are increasingly used in clinical decision support, yet current evaluation methods often fail to distinguish genuine medical reasoning from superficial patterns. We introduce DeVisE (Demographics and Vital signs Evaluation), a behavioral testing framework for probing fine-grained clinical understanding. We construct a dataset of ICU discharge notes from MIMIC-IV, generating both raw (real-world) and template-based (synthetic) versions with controlled single-variable counterfactuals targeting demographic (age, gender, ethnicity) and vital sign attributes. We evaluate five LLMs spanning general-purpose and medically fine-tuned variants, under both zero-shot and fine-tuned settings. We assess model behavior via (1) input-level sensitivity - how counterfactuals alter the likelihood of a note; and (2) downstream reasoning - how they affect predicted hospital length-of-stay. Our results show that zero-shot models exhibit more coherent counterfactual reasoning patterns, while fine-tuned models tend to be more stable yet less responsive to clinically meaningful changes. Notably, demographic factors subtly but consistently influence outputs, emphasizing the importance of fairness-aware evaluation. This work highlights the utility of behavioral testing in exposing the reasoning strategies of clinical LLMs and informing the design of safer, more transparent medical AI systems.