Abstract:Coronary microvascular dysfunction (CMD) affects millions worldwide yet remains underdiagnosed because gold-standard physiological measurements are invasive and variably reproducible. We introduce a non-invasive, uncertainty-aware framework for estimating coronary flow reserve (CFR) directly from standard angiography. The system integrates physics-informed neural networks with variational inference to infer coronary blood flow from first-principles models of contrast transport, without requiring ground-truth flow measurements. The pipeline runs in approximately three minutes per patient on a single GPU, with no population-level training. Using 1{,}000 synthetic spatiotemporal intensity maps (kymographs) with controlled noise and artifacts, the framework reliably identifies degraded data and outputs appropriately inflated uncertainty estimates, showing strong correspondence between predictive uncertainty and error (Pearson $r = 0.997$, Spearman $ρ= 0.998$). Clinical validation in 12 patients shows strong agreement between PUNCH-derived CFR and invasive bolus thermodilution (Pearson $r = 0.90$, $p = 6.3 \times 10^{-5}$). We focus on the LAD, the artery most commonly assessed in routine CMD testing. Probabilistic CFR estimates have confidence intervals narrower than the variability of repeated invasive measurements. By transforming routine angiography into quantitative, uncertainty-aware assessment, this approach enables scalable, safer, and more reproducible evaluation of coronary microvascular function. Because standard angiography is widely available globally, the framework could expand access to CMD diagnosis and establish a new paradigm for physics-informed, patient-specific inference from clinical imaging.
Abstract:4D Flow Magnetic Resonance Imaging (4D Flow MRI) enables non-invasive quantification of blood flow and hemodynamic parameters. However, its clinical application is limited by low spatial resolution and noise, particularly affecting near-wall velocity measurements. Machine learning-based super-resolution has shown promise in addressing these limitations, but challenges remain, not least in recovering near-wall velocities. Generative adversarial networks (GANs) offer a compelling solution, having demonstrated strong capabilities in restoring sharp boundaries in non-medical super-resolution tasks. Yet, their application in 4D Flow MRI remains unexplored, with implementation challenged by known issues such as training instability and non-convergence. In this study, we investigate GAN-based super-resolution in 4D Flow MRI. Training and validation were conducted using patient-specific cerebrovascular in-silico models, converted into synthetic images via an MR-true reconstruction pipeline. A dedicated GAN architecture was implemented and evaluated across three adversarial loss functions: Vanilla, Relativistic, and Wasserstein. Our results demonstrate that the proposed GAN improved near-wall velocity recovery compared to a non-adversarial reference (vNRMSE: 6.9% vs. 9.6%); however, that implementation specifics are critical for stable network training. While Vanilla and Relativistic GANs proved unstable compared to generator-only training (vNRMSE: 8.1% and 7.8% vs. 7.2%), a Wasserstein GAN demonstrated optimal stability and incremental improvement (vNRMSE: 6.9% vs. 7.2%). The Wasserstein GAN further outperformed the generator-only baseline at low SNR (vNRMSE: 8.7% vs. 10.7%). These findings highlight the potential of GAN-based super-resolution in enhancing 4D Flow MRI, particularly in challenging cerebrovascular regions, while emphasizing the need for careful selection of adversarial strategies.




Abstract:4D Flow Magnetic Resonance Imaging (4D Flow MRI) is a non-invasive measurement technique capable of quantifying blood flow across the cardiovascular system. While practical use is limited by spatial resolution and image noise, incorporation of trained super-resolution (SR) networks has potential to enhance image quality post-scan. However, these efforts have predominantly been restricted to narrowly defined cardiovascular domains, with limited exploration of how SR performance extends across the cardiovascular system; a task aggravated by contrasting hemodynamic conditions apparent across the cardiovasculature. The aim of our study was to explore the generalizability of SR 4D Flow MRI using a combination of heterogeneous training sets and dedicated ensemble learning. With synthetic training data generated across three disparate domains (cardiac, aortic, cerebrovascular), varying convolutional base and ensemble learners were evaluated as a function of domain and architecture, quantifying performance on both in-silico and acquired in-vivo data from the same three domains. Results show that both bagging and stacking ensembling enhance SR performance across domains, accurately predicting high-resolution velocities from low-resolution input data in-silico. Likewise, optimized networks successfully recover native resolution velocities from downsampled in-vivo data, as well as show qualitative potential in generating denoised SR-images from clinical level input data. In conclusion, our work presents a viable approach for generalized SR 4D Flow MRI, with ensemble learning extending utility across various clinical areas of interest.