Abstract:Training large AI models efficiently requires distributing computation across multiple accelerators, but this often incurs significant communication overhead -- especially during gradient synchronization. We introduce Dion, a communication-efficient optimizer that retains the synchronous semantics of standard distributed training (e.g., DDP, FSDP) while substantially reducing I/O costs. Unlike conventional optimizers that synchronize full gradient matrices, Dion leverages orthonormalized updates with device-local momentum buffers, eliminating the need for full gradient exchange. It further supports an efficient sharding strategy that avoids reconstructing large matrices during training.
Abstract:Goal-conditioned planning benefits from learned low-dimensional representations of rich, high-dimensional observations. While compact latent representations, typically learned from variational autoencoders or inverse dynamics, enable goal-conditioned planning they ignore state affordances, thus hampering their sample-efficient planning capabilities. In this paper, we learn a representation that associates reachable states together for effective onward planning. We first learn a latent representation with multi-step inverse dynamics (to remove distracting information); and then transform this representation to associate reachable states together in $\ell_2$ space. Our proposals are rigorously tested in various simulation testbeds. Numerical results in reward-based and reward-free settings show significant improvements in sampling efficiency, and yields layered state abstractions that enable computationally efficient hierarchical planning.