Abstract:Humble AI (Knowles et al., 2023) argues for cautiousness in AI development and deployments through scepticism (accounting for limitations of statistical learning), curiosity (accounting for unexpected outcomes), and commitment (accounting for multifaceted values beyond performance). We present a real-world case study for humble AI in the domain of algorithmic hiring. Specifically, we evaluate virtual screening algorithms in a widely used hiring platform that matches candidates to job openings. There are several challenges in misrecognition and stereotyping in such contexts that are difficult to assess through standard fairness and trust frameworks; e.g., someone with a non-traditional background is less likely to rank highly. We demonstrate technical feasibility of how humble AI principles can be translated to practice through uncertainty quantification of ranks, entropy estimates, and a user experience that highlights algorithmic unknowns. We describe preliminary discussions with focus groups made up of recruiters. Future user studies seek to evaluate whether the higher cognitive load of a humble AI system fosters a climate of trust in its outcomes.
Abstract:Climate change is one of the most pressing challenges of our time, requiring rapid action across society. As artificial intelligence tools (AI) are rapidly deployed, it is therefore crucial to understand how they will impact climate action. On the one hand, AI can support applications in climate change mitigation (reducing or preventing greenhouse gas emissions), adaptation (preparing for the effects of a changing climate), and climate science. These applications have implications in areas ranging as widely as energy, agriculture, and finance. At the same time, AI is used in many ways that hinder climate action (e.g., by accelerating the use of greenhouse gas-emitting fossil fuels). In addition, AI technologies have a carbon and energy footprint themselves. This symposium brought together participants from across academia, industry, government, and civil society to explore these intersections of AI with climate change, as well as how each of these sectors can contribute to solutions.