Abstract:The success of CLIP has driven substantial progress in text-video retrieval. However, current methods often suffer from "blind" feature interaction, where the model struggles to discern key visual information from background noise due to the sparsity of textual queries. To bridge this gap, we draw inspiration from human cognitive behavior and propose the Human Vision-Driven (HVD) model. Our framework establishes a coarse-to-fine alignment mechanism comprising two key components: the Frame Features Selection Module (FFSM) and the Patch Features Compression Module (PFCM). FFSM mimics the human macro-perception ability by selecting key frames to eliminate temporal redundancy. Subsequently, PFCM simulates micro-perception by aggregating patch features into salient visual entities through an advanced attention mechanism, enabling precise entity-level matching. Extensive experiments on five benchmarks demonstrate that HVD not only captures human-like visual focus but also achieves state-of-the-art performance.
Abstract:Video-text retrieval (VTR) aims to locate relevant videos using natural language queries. Current methods, often based on pre-trained models like CLIP, are hindered by video's inherent redundancy and their reliance on coarse, final-layer features, limiting matching accuracy. To address this, we introduce the HVP-Net (Hierarchical Visual Perception Network), a framework that mines richer video semantics by extracting and refining features from multiple intermediate layers of a vision encoder. Our approach progressively distills salient visual concepts from raw patch-tokens at different semantic levels, mitigating redundancy while preserving crucial details for alignment. This results in a more robust video representation, leading to new state-of-the-art performance on challenging benchmarks including MSRVTT, DiDeMo, and ActivityNet. Our work validates the effectiveness of exploiting hierarchical features for advancing video-text retrieval. Our codes are available at https://github.com/boyun-zhang/HVP-Net.