Abstract:The integration of dual-modal features has been pivotal in advancing RGB-Depth (RGB-D) tracking. However, current trackers are less efficient and focus solely on single-level features, resulting in weaker robustness in fusion and slower speeds that fail to meet the demands of real-world applications. In this paper, we introduce a novel network, denoted as HMAD (Hierarchical Modality Aggregation and Distribution), which addresses these challenges. HMAD leverages the distinct feature representation strengths of RGB and depth modalities, giving prominence to a hierarchical approach for feature distribution and fusion, thereby enhancing the robustness of RGB-D tracking. Experimental results on various RGB-D datasets demonstrate that HMAD achieves state-of-the-art performance. Moreover, real-world experiments further validate HMAD's capacity to effectively handle a spectrum of tracking challenges in real-time scenarios.
Abstract:The RGB-Depth (RGB-D) Video Object Segmentation (VOS) aims to integrate the fine-grained texture information of RGB with the spatial geometric clues of depth modality, boosting the performance of segmentation. However, off-the-shelf RGB-D segmentation methods fail to fully explore cross-modal information and suffer from object drift during long-term prediction. In this paper, we propose a novel RGB-D VOS method via multi-store feature memory for robust segmentation. Specifically, we design the hierarchical modality selection and fusion, which adaptively combines features from both modalities. Additionally, we develop a segmentation refinement module that effectively utilizes the Segmentation Anything Model (SAM) to refine the segmentation mask, ensuring more reliable results as memory to guide subsequent segmentation tasks. By leveraging spatio-temporal embedding and modality embedding, mixed prompts and fused images are fed into SAM to unleash its potential in RGB-D VOS. Experimental results show that the proposed method achieves state-of-the-art performance on the latest RGB-D VOS benchmark.