Abstract:Phytoplankton absorb and scatter light in unique ways, subtly altering the color of water, changes that are often minor for human eyes to detect but can be captured by sensitive ocean color instruments onboard satellites from space. Hyperspectral sensors, paired with advanced algorithms, are expected to significantly enhance the characterization of phytoplankton community composition, especially in coastal waters where ocean color remote sensing applications have historically encountered significant challenges. This study presents novel machine learning-based solutions for NASA's hyperspectral missions, including EMIT and PACE, tackling high-fidelity retrievals of phytoplankton absorption coefficient and chlorophyll a from their hyperspectral remote sensing reflectance. Given that a single Rrs spectrum may correspond to varied combinations of inherent optical properties and associated concentrations, the Variational Autoencoder (VAE) is used as a backbone in this study to handle such multi-distribution prediction problems. We first time tailor the VAE model with innovative designs to achieve hyperspectral retrievals of aphy and of Chl-a from hyperspectral Rrs in optically complex estuarine-coastal waters. Validation with extensive experimental observation demonstrates superior performance of the VAE models with high precision and low bias. The in-depth analysis of VAE's advanced model structures and learning designs highlights the improvement and advantages of VAE-based solutions over the mixture density network (MDN) approach, particularly on high-dimensional data, such as PACE. Our study provides strong evidence that current EMIT and PACE hyperspectral data as well as the upcoming Surface Biology Geology mission will open new pathways toward a better understanding of phytoplankton community dynamics in aquatic ecosystems when integrated with AI technologies.
Abstract:Most existing temporal point process models are characterized by conditional intensity function. These models often require numerical approximation methods for likelihood evaluation, which potentially hurts their performance. By directly modelling the integral of the intensity function, i.e., the cumulative hazard function (CHF), the likelihood can be evaluated accurately, making it a promising approach. However, existing CHF-based methods are not well-defined, i.e., the mathematical constraints of CHF are not completely satisfied, leading to untrustworthy results. For multivariate temporal point process, most existing methods model intensity (or density, etc.) functions for each variate, limiting the scalability. In this paper, we explore using neural networks to model a flexible but well-defined CHF and learning the multivariate temporal point process with low parameter complexity. Experimental results on six datasets show that the proposed model achieves the state-of-the-art performance on data fitting and event prediction tasks while having significantly fewer parameters and memory usage than the strong competitors. The source code and data can be obtained from https://github.com/lbq8942/NPP.
Abstract:Electronic Health Records (EHR) can be represented as temporal sequences that record the events (medical visits) from patients. Neural temporal point process (NTPP) has achieved great success in modeling event sequences that occur in continuous time space. However, due to the black-box nature of neural networks, existing NTPP models fall short in explaining the dependencies between different event types. In this paper, inspired by word2vec and Hawkes process, we propose an interpretable framework inf2vec for event sequence modelling, where the event influences are directly parameterized and can be learned end-to-end. In the experiment, we demonstrate the superiority of our model on event prediction as well as type-type influences learning.
Abstract:A temporal graph can be considered as a stream of links, each of which represents an interaction between two nodes at a certain time. On temporal graphs, link prediction is a common task, which aims to answer whether the query link is true or not. To do this task, previous methods usually focus on the learning of representations of the two nodes in the query link. We point out that the learned representation by their models may encode too much information with side effects for link prediction because they have not utilized the information of the query link, i.e., they are link-unaware. Based on this observation, we propose a link-aware model: historical links and the query link are input together into the following model layers to distinguish whether this input implies a reasonable pattern that ends with the query link. During this process, we focus on the modeling of link evolution patterns rather than node representations. Experiments on six datasets show that our model achieves strong performances compared with state-of-the-art baselines, and the results of link prediction are interpretable. The code and datasets are available on the project website: https://github.com/lbq8942/TGACN.