Abstract:While large language models show promise in mental healthcare, evaluating their therapeutic competence remains challenging due to the unstructured and longitudinal nature of counseling. We argue that current evaluation paradigms suffer from an unanchored defect, leading to two forms of instability: process drift, where unsteered client simulation wanders away from specific counseling goals, and standard drift, where static pointwise scoring lacks the stability for reliable judgment. To address this, we introduce Ps, a unified framework that calibrates the therapeutic competence of LLMs via trajectory-anchored tournaments. We first anchor the interaction trajectory in simulation, where clients precisely control the fluid consultation process to probe multifaceted capabilities. We then anchor the battle trajectory in judgments through an efficient Swiss-system tournament, utilizing dynamic pairwise battles to yield robust Elo ratings. Beyond ranking, we demonstrate that tournament trajectories can be transformed into credible reward signals, enabling on-policy reinforcement learning to enhance LLMs' performance. Extensive experiments validate the effectiveness of PsychePass and its strong consistency with human expert judgments.
Abstract:Large language models (LLMs) have shown promise in providing scalable mental health support, while evaluating their counseling capability remains crucial to ensure both efficacy and safety. Existing evaluations are limited by the static assessment that focuses on knowledge tests, the single perspective that centers on user experience, and the open-loop framework that lacks actionable feedback. To address these issues, we propose {\Psi}-Arena, an interactive framework for comprehensive assessment and optimization of LLM-based counselors, featuring three key characteristics: (1) Realistic arena interactions that simulate real-world counseling through multi-stage dialogues with psychologically profiled NPC clients, (2) Tripartite evaluation that integrates assessments from the client, counselor, and supervisor perspectives, and (3) Closed-loop optimization that iteratively improves LLM counselors using diagnostic feedback. Experiments across eight state-of-the-art LLMs show significant performance variations in different real-world scenarios and evaluation perspectives. Moreover, reflection-based optimization results in up to a 141% improvement in counseling performance. We hope PsychoArena provides a foundational resource for advancing reliable and human-aligned LLM applications in mental healthcare.