Abstract:In sensitive applications involving relational datasets, protecting information about individual links from adversarial queries is of paramount importance. In many such settings, the available data are summarized solely through the degrees of the nodes in the network. We adopt the $β$ model, which is the prototypical statistical model adopted for this form of aggregated relational information, and study the problem of minimax-optimal parameter estimation under both local and central differential privacy constraints. We establish finite sample minimax lower bounds that characterize the precise dependence of the estimation risk on the network size and the privacy parameters, and we propose simple estimators that achieve these bounds up to constants and logarithmic factors under both local and central differential privacy frameworks. Our results provide the first comprehensive finite sample characterization of privacy utility trade offs for parameter estimation in $β$ models, addressing the classical graph case and extending the analysis to higher order hypergraph models. We further demonstrate the effectiveness of our methods through experiments on synthetic data and a real world communication network.




Abstract:Clustering approaches that utilize convex loss functions have recently attracted growing interest in the formation of compact data clusters. Although classical methods like k-means and its wide family of variants are still widely used, all of them require the number of clusters k to be supplied as input, and many are notably sensitive to initialization. Convex clustering provides a more stable alternative by formulating the clustering task as a convex optimization problem, ensuring a unique global solution. However, it faces challenges in handling high-dimensional data, especially in the presence of noise and outliers. Additionally, strong fusion regularization, controlled by the tuning parameter, can hinder effective cluster formation within a convex clustering framework. To overcome these challenges, we introduce a robust approach that integrates convex clustering with the Median of Means (MoM) estimator, thus developing an outlier-resistant and efficient clustering framework that does not necessitate prior knowledge of the number of clusters. By leveraging the robustness of MoM alongside the stability of convex clustering, our method enhances both performance and efficiency, especially on large-scale datasets. Theoretical analysis demonstrates weak consistency under specific conditions, while experiments on synthetic and real-world datasets validate the method's superior performance compared to existing approaches.