Abstract:Automated floorplan generation aims to improve design quality, architectural efficiency, and sustainability by jointly modeling global spatial organization and precise geometric detail. However, existing approaches operate in raster space and rely on post hoc vectorization, which introduces structural inconsistencies and hinders end-to-end learning. Motivated by compositional spatial reasoning, we propose TLC-Plan, a hierarchical generative model that directly synthesizes vector floorplans from input boundaries, aligning with human architectural workflows based on modular and reusable patterns. TLC-Plan employs a two-level VQ-VAE to encode global layouts as semantically labeled room bounding boxes and to refine local geometries using polygon-level codes. This hierarchy is unified in a CodeTree representation, while an autoregressive transformer samples codes conditioned on the boundary to generate diverse and topologically valid designs, without requiring explicit room topology or dimensional priors. Extensive experiments show state-of-the-art performance on RPLAN dataset (FID = 1.84, MSE = 2.06) and leading results on LIFULL dataset. The proposed framework advances constraint-aware and scalable vector floorplan generation for real-world architectural applications. Source code and trained models are released at https://github.com/rosolose/TLC-PLAN.
Abstract:We present \textbf{CAGE} (\textit{Continuity-Aware edGE}) network, a \textcolor{red}{robust} framework for reconstructing vector floorplans directly from point-cloud density maps. Traditional corner-based polygon representations are highly sensitive to noise and incomplete observations, often resulting in fragmented or implausible layouts. Recent line grouping methods leverage structural cues to improve robustness but still struggle to recover fine geometric details. To address these limitations, we propose a \textit{native} edge-centric formulation, modeling each wall segment as a directed, geometrically continuous edge. This representation enables inference of coherent floorplan structures, ensuring watertight, topologically valid room boundaries while improving robustness and reducing artifacts. Towards this design, we develop a dual-query transformer decoder that integrates perturbed and latent queries within a denoising framework, which not only stabilizes optimization but also accelerates convergence. Extensive experiments on Structured3D and SceneCAD show that \textbf{CAGE} achieves state-of-the-art performance, with F1 scores of 99.1\% (rooms), 91.7\% (corners), and 89.3\% (angles). The method also demonstrates strong cross-dataset generalization, underscoring the efficacy of our architectural innovations. Code and pretrained models will be released upon acceptance.