Abstract:Authorizing Large Language Model driven agents to dynamically invoke tools and access protected resources introduces significant risks, since current methods for delegating authorization grant overly broad permissions and give access to tools allowing agents to operate beyond the intended task scope. We introduce and assess a delegated authorization model enabling authorization servers to semantically inspect access requests to protected resources, and issue access tokens constrained to the minimal set of scopes necessary for the agents' assigned tasks. Given the unavailability of datasets centered on delegated authorization flows, particularly including both semantically appropriate and inappropriate scope requests for a given task, we introduce ASTRA, a dataset and data generation pipeline for benchmarking semantic matching between tasks and scopes. Our experiments show both the potential and current limitations of model-based matching, particularly as the number of scopes needed for task completion increases. Our results highlight the need for further research into semantic matching techniques enabling intent-aware authorization for multi-agent and tool-augmented applications, including fine-grained control, such as Task-Based Access Control (TBAC).




Abstract:Driver identification has emerged as a vital research field, where both practitioners and researchers investigate the potential of driver identification to enable a personalized driving experience. Within recent years, a selection of studies have reported that individuals could be perfectly identified based on their driving behavior under controlled conditions. However, research investigating the potential of driver identification under naturalistic conditions claim accuracies only marginally higher than random guess. The paper at hand provides a comprehensive summary of the recent work, highlighting the main discrepancies in the design of the machine learning approaches, primarily the window length parameter that was considered. Key findings further indicate that the longitudinal vehicle control information is particularly useful for driver identification, leaving the research gap on the extent to which the lateral vehicle control can be used for reliable identification. Building upon existing work, we provide a novel approach for the design of the window length parameter that provides evidence that reliable driver identification can be achieved with data limited to the steering wheel only. The results and insights in this paper are based on data collected from the largest naturalistic driving study conducted in this field. Overall, a neural network based on GRUs was found to provide better identification performance than traditional methods, increasing the prediction accuracy from under 15\% to over 65\% for 15 drivers. When leveraging the full field study dataset, comprising 72 drivers, the accuracy of identification prediction of the approach improved a random guess approach by a factor of 25.